???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/2576
Tipo do documento: Dissertação
Título: Aprendizagem Profunda Aplicada ao Diagnóstico do Glaucoma
Título(s) alternativo(s): Deep Learning Applied to the Diagnosis of Glaucoma
Autor: LIMA, Alan Carlos de Moura 
Primeiro orientador: BRAZ JÚNIOR, Geraldo
Primeiro coorientador: ALMEIDA, João Dallyson Sousa de
Primeiro membro da banca: BRAZ JÚNIOR, Geraldo
Segundo membro da banca: ALMEIDA, João Dallyson Sousa de
Terceiro membro da banca: PAIVA, Anselmo Cardoso de
Quarto membro da banca: VERAS, Rodrigo de Melo Souza
Resumo: O glaucoma é um grupo de doenças oculares que causam danos ao nervo óptico, ocasionando o sucessivo estreitamento do campo visual em pacientes afetados, devido a um aumento da pressão intra-ocular, que pode levar o paciente, em estágio avançado, à cegueira, sem reversão clínica. Por diversos anos, desde técnicas de análise manual das estruturas internas do globo ocular à utilização de aprendizagem profunda com redes neurais convolucionais (CNNs, do inglês, Convolutional Neural Networks) foram utilizadas com sucesso no diagnóstico do glaucoma. No entanto, construir uma rede de aprendizagem profunda demanda um grande esforço que em muitas situações nem sempre são capazes de alcançar resultados satisfatórios, devido à quantidade de parâmetros que necessitam ser configurados para adequar a arquitetura da CNN ao problema em questão. O objetivo deste trabalho consiste em utilizar uma técnica de otimização de hiperparâmetros para selecionar parâmetros ideais de um algoritmo genético (AG) que vise escolher a melhor arquitetura CNN, através de técnicas evolutivas e que seja capaz de auxiliar no diagnóstico mais preciso do glaucoma, em imagens de fundo de olho. A metodologia proposta foi aplicada em 455 imagens do dataset RIM-ONE, em sua segunda versão (r2), com imagens redimensionadas para o tamanho 96x96, no padrão RGB. A CNN selecionada pelo AG, após o treinamento, apresentou para o diagnóstico do glaucoma os resultados de acurácia de 96,63%, sensibilidade de 94,87%, especificidade de 98,00%, precisão de 97,37% e f-score de 96,10%.
Abstract: Glaucoma is a cluster of ocular diseases that cause damage to the eye’s optic nerve and cause successive narrowing of the visual field in affected patients, due to an increase in intraocular pressure, which can lead the patient to blindness at an advanced stage without clinical reversal. For several years, from techniques of manual analysis of the internal structures of the eye to the use of deep learning with convolutional neural networks (CNNs) were successfully used in the diagnosis of glaucoma. However, building a deep learning network requires a lot of effort that in many situations is not always able to achieve satisfactory results due to the amount of parameters that need to be configured to adapt the CNN architecture to the problem in question. The objective of this work is to use a hyperparameter search technic to select the tuned parameters of a genetic algorithm (GA) to select the best CNN architecture through evolutionary techniques and to be able to aid in the accurate diagnosis of glaucoma, in eye fund images. The proposed methodology was applied in 455 images from RIM-ONE dataset, in its version 2 (r2), with resized images to 96x96 pixels in the RGB color model. The selected CNN by AG, after its training, achieved for the diagnosis of glaucoma the results of 96.63% for accuracy, 94.87% for sensitivity, 98.00% for specificity, 97.37% for precision and 96.10% for f-score.
Palavras-chave: Diagnóstico de glaucoma
Aprendizagem profunda
Meta learning
Algoritmos genéticos
Glaucoma diagnosis
Deep learning
Meta learning
Genetic algorithms
Área(s) do CNPq: Teoria da Computação
Análise de Algoritmos e Complexidade de Computação
Oftalmologia
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Citação: LIMA, Alan Carlos de Moura. Aprendizagem Profunda Aplicada ao Diagnóstico do Glaucoma. 2019. 78 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação / CCET) - Universidade Federal do Maranhão, São Luís.
Tipo de acesso: Acesso Aberto
URI: https://tedebc.ufma.br/jspui/handle/tede/tede/2576
Data de defesa: 19-Feb-2019
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Files in This Item:
File Description SizeFormat 
AlanLima.pdfDissertação de Mestrado2,16 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.