???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/2163
Tipo do documento: Dissertação
Título: Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais
Título(s) alternativo(s): Development of a repositioning system for a robot of probing using convolutional networks
Autor: SANTOS, Daniel de Matos Luna dos 
Primeiro orientador: BARROS FILHO, Allan Kardec Duailibe
Primeiro coorientador: CAVALCANTE, André Borges
Primeiro membro da banca: BARROS FILHO, Allan Kardec Duailibe
Segundo membro da banca: SANTANA, Ewaldo Eder Carvalho
Terceiro membro da banca: FREIRE, Raimundo Carlos Silvério
Quarto membro da banca: CAVALCANTE, André Borges
Resumo: As Redes Neuronais Convolucionais (do inglês Convolutional Neural NetworksCNN ) têm sido utilizadas com sucesso para operações de alinhamento em plataformas autônomas, para ambientes cuja complexidade do cenário e os recursos de pré-processamento da imagem são fatores decisivos para o sucesso da classificação (atitudes de reposicionamento). O objetivo do presente estudo é desenvolver um sistema de aproximação autônomo com base na classificação de imagens por uma CNN. Os resultados obtidos mostram a CNN superior (Acurácia 82%) a um método que utiliza Limiar de Decisão e Marcadores (Acurácia 51,8%), desenvolvido para teste inicial do sistema de aproximação. A utilização da Rede Convolucional também implicou no desenvolvimento de uma ferramenta de geração do banco de dados em diferentes cenários nos quais foram gerados tanto sobre o modelo virtual do sistema mecânico, como sobre o modelo físico. Para a geração do banco de dados com base no modelo virtual e sua inserção diferentes cenários de operação foi utilizada uma técnica de processamento de imagem caracterizada como \Background Subtraction", onde a partir de um limiar de controle, o objeto desejado (sistema de sondagem) foi extraído do \Background"(píxeis do cenário), sendo posteriormente inserido em outro \Background"(píxeis referentes ao cenário desejado), associado aos valores de ângulo do respectivo modelo. Na geração do banco de dados com o modelo físico foram utilizados sensores para aquisição de imagens e valores de ângulo de inclinação do sistema de sondagem. Os resultados finais obtidos contemplam uma ferramenta para geração de um banco de dados (aplicados `a métodos de aprendizagem de máquina), e automatização do processo de reposicionamento.
Abstract: Convolutional Neural Networks (CNN) has been successfully used for positioning operations on standalone platforms, for environments whose scenario complexity and image pre-processing capabilities are decisive factors for the success of the classification (repositioning attitudes). The objective of the present study is to develop an autonomous approximation system with the base classification of images by a CNN. The results show the superior CNN (accuracy 82%) to a method that uses Decision threshold and Markers (accuracy 51.8%), developed an initial test of the approach system. For the generation of the database based on the virtual model and its insertion different operating scenarios was used an image processing technique characterized as \Background Subtraction", where from a control threshold, the desired object) was extracted from the \Background"(pixels of the scenario), and later inserted in another \Background" (pixels related to the desired scenario), associated with the angle values of the respective model. The final results obtained include a tool for generating a database (applied to machine learning methods) and automating the repositioning process.
Palavras-chave: Reposicionamento
Banco de Dados
Redes Convolucionais
Automatização
Imagem
Repositioning
Database
Convolutional Networks
Automation
Área(s) do CNPq: Engenharia Elétrica
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DA ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: SANTOS, Daniel de Matos Luna dos. Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais. 2018. 83f. Dissertação (Mestrado em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís.
Tipo de acesso: Acesso Aberto
URI: https://tedebc.ufma.br/jspui/handle/tede/tede/2163
Data de defesa: 28-Feb-2018
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
DanielSantos.pdfDissertação de Mestrado5,78 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.