???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1943
Tipo do documento: Tese
Título: Uma arquitetura híbrida com aprendizagem para o desenvolvimento de agentes de software
Título(s) alternativo(s): A Hybrid Architecture with Learning for the Development of Software Agents
Autor: COSTA, Adriana Leite 
Primeiro orientador: GIRARDI, Rosario
Primeiro membro da banca: COSTA, Evandro de Barros
Segundo membro da banca: PERKUSICH, Angelo
Terceiro membro da banca: SILVA, Francisco José da Silva e
Quarto membro da banca: LOPES, Denivaldo Cicero Pavão
Resumo: Os agentes de software representam uma evolução do software tradicional, tendo a capacidade de controlar seu próprio comportamento e agir com autonomia. Tipicamente, os agentes de software agem de forma reativa, onde as percepções e ações são predefinidas no momento da sua concepção, ou de forma deliberativa, onde a ação correspondente para uma determinada percepção é encontrada em tempo de execução através de um processo de raciocínio. Os agentes deliberativos não necessitam que todo o conhecimento seja predefinido, ao contrário, a partir de um conhecimento inicial eles conseguem inferir novo conhecimento. Todavia, em muitos casos, para encontrar uma ação apropriada a uma determinada percepção eles levam muito tempo, gerando um alto custo computacional. Como solução a esse problema, apresentamos neste trabalho uma arquitetura híbrida com aprendizagem para o desenvolvimento de agentes de software híbridos. Os agentes híbridos, que combinam comportamento reativo e deliberativo, são uma opção melhor para estruturar os agentes de software. As principais vantagens da arquitetura tese é o aprendizado do comportamento reativo, mais rápido e eficiente, através de interações do agente com o seu ambiente e a sua consequente adaptabilidade ao ambiente. O agente se adapta ao ambiente na medida em que aprende novo comportamento reativo a partir de comportamento deliberativo frequente. A arquitetura tese foi avaliada através do desenvolvimento de estudos de casos no domínio da segurança da informação utilizando o raciocínio baseado em casos, ontologias para a representação do conhecimento do domínio de estudo e aprendizagem supervisionada para geração automática de regras reativas. Os resultados obtidos com os estudos de casos realizados confirmaram uma efetividade maior e um menor tempo de resposta do agente híbrido com aprendizagem em relação tanto ao comportamento isolado de um agente reativo ou deliberativo bem como de um agente híbrido sem aprendizagem no domínio da detecção de intrusões em redes de computadores. A partir da especificação e avaliação da arquitetura híbrida com aprendizagem supervisionada no domínio da Segurança da Informação, foi generalizada uma arquitetura de referência para o desenvolvimento de agentes híbridos com aprendizagem. Em trabalhos futuros, pretende-se avaliar esta arquitetura de referência em outros domínios, com outros tipos de raciocínio e técnicas de aprendizagem para avaliar o seu impacto na produtividade e qualidade do desenvolvimento de agentes de software híbridos.
Abstract: Software agents represent an evolution of traditional software entities, having the ability to control their own behavior and acting with autonomy. Typically, software agents act reactively, where actions and perceptions are predefined at design time, or in a deliberative way, where the corresponding action for a given perception is found at run time through reasoning. Deliberative agents do not need all knowledge to be predefined; on the contrary, from an initial knowledge they can infer new knowledge. However, to find an action appropriate to a particular perception, they take a long time, generating a high computational cost. As a solution to this problem, a hybrid architecture with learning for the development of hybrid software agents is presented in this work. Hybrid agents combine reactive and deliberative behavior taking advantage of the speed of reactive behavior and the reasoning capability of the deliberative one are a better option for structuring software agents. The main advantages of the proposed architecture are learning of the reactive behavior, faster and more efficient, through the interactions of the agent with its environment and its consequent adaptability to the environment. The agent adapts to the environment as it learns new reactive behavior from frequent deliberative behavior. The proposed architecture was evaluated through the development of case studies in the information security domain using case-based reasoning, ontologies for the representation of domain knowledge and supervised learning for automatic generation of reactive rules. Results obtained with the case studies performed confirmed a greater effectiveness and a shorter response time of the hybrid agent with learning regarding both the reactive or deliberative agent as well as a hybrid agent without learning in the intrusion detection in computer networks domain. From the specification and evaluation of the hybrid architecture with supervised learning in the Information Security domain, a reference architecture for the development of hybrid agents with learning was generalized. In future works, we intend to evaluate this reference architecture in other domains, with other types of reasoning and learning techniques to evaluate its impact on the productivity and quality of the development of hybrid software agents.
Palavras-chave: Agentes de Software Híbridos com Aprendizagem
Arquiteturas de Agentes de Software
Raciocínio Baseado em Casos
Sistemas para Detecção de Intrusões
Ontologias
Hybrid Learning Software Agents
Software Agent Architectures
Intrusion Detection Systems
Ontologies
Área(s) do CNPq: Engenharia de Software
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: COSTA, Adriana Leite. Uma arquitetura híbrida com aprendizagem para o desenvolvimento de agentes de software. 2017. 161 f. Tese (Doutorado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017.
Tipo de acesso: Acesso Aberto
URI: https://tedebc.ufma.br/jspui/handle/tede/tede/1943
Data de defesa: 14-Aug-2017
Appears in Collections:TESE DE DOUTORADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
AdrianaCosta.pdfTese3,75 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.