Exportar este item: EndNote BibTex

Use este identificador para citar ou linkar para este item: https://tedebc.ufma.br/jspui/handle/tede/tede/1534
Tipo do documento: Dissertação
Título: Diagnóstico de nódulos pulmonares em imagens de tomografia computadorizada usando redes neurais convolucionais evolutivas
Autor: Silva, Giovanni Lucca França da 
Primeiro orientador: SILVA, Aristófanes Corrêa
Primeiro coorientador: Paiva, Anselmo Cardoso de
Resumo: O câncer de pulmão é a maior causa de morte por câncer em todo mundo, representando mais de 17% do total de mortes relacionadas com câncer. No entanto, sua detecçãao precoce pode ajudar em uma queda acentuada nesta taxa de mortalidade. Devido ao árduo processo na análise dos exames por imagens, alternativas como sistemas computacionais que utilizam técnicas de processamento de imagens e reconhecimento de padrões têm sido amplamente desenvolvidos e explorados para o diagnóstico precoce desta doen¸ca, provendo uma segunda opinião para o especialista e tornando esse processo mais rápido. Diante disso, este trabalho propõe uma metodologia para o diagnóstico de nódulos pulmonares baseado nas fatias extraídas da tomografia computadorizada usando as redes neurais convolucionais evolutivas. Primeiramente, os nódulos são divididos em duas sub-regiões utilizando o algoritmo de Otsu baseado no algoritmo de otimização por enxame de partículas. Em seguida, as fatias dos nódulos e as fatias das suas sub-regiões foram redimensionadas para a dimensão 28 x 28 e dadas como entrada simultaneamente às redes. A arquitetura do modelo foi composta por três redes neurais convolucionais compartilhando a mesma camada completamente conectada no final. Tratando-se de um modelo parametrizado, o algoritmo genético foi aplicado para otimização de alguns parâmetros, tais como a quantidade de filtros nas camadas de convolução e a quantidade de neurônios na camada oculta. A metodologia proposta foi testada na base de imagens Lung Image Database Consortium e a Image Database Resource Initiative, resultando em uma sensibilidade de 94,66%, especifidade de 95,14%, acurácia de 94,78% e área sob a curva ROC de 0,949.
Abstract: Lung cancer is the leading cause of cancer death worldwide, which accounts for more than 17% percent of the total cancer related deaths. However, its early detection may help in a sharp drop in this mortality rate. Because of the arduous analysis process, alternatives such as computational tools that use image processing techniques and pattern recognition have been widely developed and explored for the early diagnosis of this disease, providing a second opinion to the specialist and making this process faster. Therefore, this work proposes a methodology for the diagnosis of slice-based lung nodules extracted from computed tomography images using evolutionary convolutional neural networks. Firstly, the nodules are divided into two sub-regions using the Otsu algorithm based on the particle swarm optimization algorithm. Then, the slices of the nodules and the slices of their sub-regions were resized to the 28 x 28 dimension and given as input simultaneously to the networks. The architecture of the model was composed of three convolutional neural networks sharing the same fully connected layer at the end. Being a parameterized model, the genetic algorithm was applied to optimize some parameters, such as the number of filters in the convolution layers and the number of neurons in the hidden layer. The proposed methodology was tested on the Lung Image Database Consortium and the Image Database Resource Initiative, resulting in a sensitivity of 94.66 %, specificity of 95.14 %, accuracy of 94.78 % and area under the ROC curve of 0.949.
Palavras-chave: Imagens médicas
Câncer pulmonar
Aprendizagem profunda
Rede neural convolucional
Algoritmo genético
Medical images
Lung cancer
Deep learning
Convolutional neural network
Genetic algorithm
Área(s) do CNPq: Processamento Gráfico
Cancerologia
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: COORDENAÇÃO DO CURSO DE CIÊNCIAS DA COMPUTAÇÃO/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Citação: SILVA, Giovanni Lucca França da. Diagnóstico de nódulos pulmonares em imagens de tomografia computadorizada usando redes neurais convolucionais evolutivas. 2017. 72 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2017.
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1534
Data de defesa: 31-Jan-2017
Aparece nas coleções:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
GiovanniLucca.pdfDissertação1,57 MBAdobe PDFBaixar/Abrir Pré-Visualizar


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.