???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1324
Tipo do documento: Dissertação
Título: Diagnóstico de câncer de mama em imagens mamográficas através de características locais e invariantes
Título(s) alternativo(s): Diagnosis of breast cancer in images mammography through local features and invariants
Autor: MATOS, Caio Eduardo Falcão
Primeiro orientador: BRAZ JÚNIOR, Geraldo
Primeiro coorientador: PAIVA, Anselmo Cardoso de
Resumo: O câncer de mama é apontado como uma das principais causas de morte entre as mulheres. As altas taxas de mortalidade e registros de ocorrência desse câncer em todo o mundo evidenciam a importância do desenvolvimento e investigação de meios para a detecção e diagnóstico precoce dessa doença. Sistemas de Detecção e Diagnóstico auxiliados por computador (Computer Aided Detection/Diagnosis) vêm sendo usados e propostos como forma de auxílio aos profissionais de saúde. Este trabalho propõe uma metodologia para discriminação de padrões de malignidade e benignidade de massas em imagens de mamografia através da análise de características locais. Para tanto, a metodologia combina detectores e descritores de características locais com um modelo de representação de dados para a análise, tanto de textura quanto de geometria em regiões extraídas das mamografias. São utilizados os detectores SIFT, SURF e ORB, e descritores HOG, LBP, BRIEF e Haar Wavelet. Com as características geradas é aplicado o modelo Bag of Features em uma etapa de representação que objetiva prover nova representação dos dados e por conseguinte diminuir a dimensionalidade do espaço de características. Por fim, esta nova representação é classificada utilizando três abordagens: Máquina de Vetores de Suporte, Random Forests e Adaptive Boosting visando diferenciar as massas malignas e benignas. A metodologia contém resultados promissores para o diagnóstico de massas malignas e benignas fomentando que as características locais geradas pelos descritores e detectores produzem um conjunto descriminate satisfatório.
Abstract: Breast cancer is one of the leading causes of death among women over the world. The high mortality rates that cancers achieves across the world highlight the importance of developing and investigating the means for the early detection and diagnosis of this disease. Computer Detection and Diagnosis Systems (Computer Assisted Detection / Diagnosis) have been used and proposed as a way to help health professionals. This work proposes a new methodology for discriminating patterns of malignancy and benignity of masses in mammography images by analysis of local characteristics. To do so, it is proposed a combined methodology of feature detectors and descriptors with a model of data representation for an analysis. The goal is to capture both texture and geometry in areas of mammograms. We use the SIFT, SURF and ORB detectors, and the descriptors HOG, LBP, BRIEF and Haar Wavelet. The generated characteristics are coded by a bag of features model to provide a new representation of the data and therefore decrease a dimensionality of the space of characteristics. Finally, this new representation is classified using three approaches: Support Vector Machine, Random Forest, and Adaptive Boosting to differentiate as malignant and benign masses. The methodology provides promising results for the diagnosis of malignant and benign mass encouraging that as local characteristics generated by descriptors and detectors produce a satisfactory a discriminating set.
Palavras-chave: Reconhecimento de Padrões; Câncer de Mama; Mamografia; Detecção de Características; Representação de Características
Pattern Recognition; Breast Cancer; Mammography; Feature Detection; Feature Representation
Área(s) do CNPq: Modelos Analíticos e de Simulação
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Citação: MATOS, Caio Eduardo Falcão. Diagnóstico de câncer de mama em imagens mamográficas através de características locais e invariantes. 2017. [85 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET) - Universidade Federal do Maranhão, [São Luis] .
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1324
Data de defesa: 8-Feb-2017
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Files in This Item:
File Description SizeFormat 
Caio Eduardo Falcão Matos.pdfDissertação de Mestrado1,84 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.