???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/550
Tipo do documento: Tese
Título: UM ALGORITMO TIPO RLS BASEADO EM SUPERFÍCIES NÃO QUADRÁTICAS
Título(s) alternativo(s): A ALGORITHM TYPE RLS BASED IN NON QUADRATIC SURFACES
Autor: Silva, Cristiane Cristina Sousa da 
Primeiro orientador: BARROS FILHO, Allan Kardec Duailibe
Resumo: Em filtragem adaptativa, vários filtros são baseados no método do erro quadrático médio (do inglês, MSE- mean squared error ) e muitos desses foram desenvolvidos para obter uma convergência rápida com um menos desajuste. Os algoritmos mínimos quadrático médio (do inglês, LMS- least mean square ) e mínimos quadrados recursivos (do inglês, RLS- recursive least square ) foram um marco em filtragem adaptativa. Nesse trabalho apresentamos o desenvolvimento de uma família de algoritmos adaptativos baseados nas potências pares do erro, inspirado na dedução do algoritmo RLS padrão. Chamaremos esses novos algoritmos de recursivo não-quadrático (RNQ). A ideia básica é baseada na função de custo apresentada por Widrow no algoritmo mínimo quarto médio ( do inglês, LMF least mean square fourth). Inicialmente derivamos equações baseados em uma potência par do erro para obter critérios que garantam a convergência. Determinamos também, equações que definem o desajuste e o tempo de aprendizagem do processo de adaptação do algoritmo RNQ baseado em potência para arbitrária. Trabalhamos também, no sentido de tornar o algoritmo menos sensível ao tamanho do erro numa direção alternativa, propondo uma função de custo baseado na soma das potências pares do erro. Essa segunda abordagem torna explícito o papel do erro na formulação do RLS ao propor uma nova função de custo que preserve a solução MSE, mas permite a utilização dos momentos de alta ordem do erro para aumentar a velocidade de convergência do algoritmo. O principal objetivo do nosso trabalho é criar a partir dos primeiros princípios (novas funções de custo) um mecanismo para incluir informações de erro instantâneo no algoritmo RLS e torná-lo um seguidor melhor. Assim, o aspecto-chave dessa nova abordagem é incluir o erro no ganho de Kalman que controla efetivamente a velocidade de adaptação do algoritmo de RLS.
Abstract: In adaptive filtering many adaptive filter are based on the mean square error method (MSE). These filters were developed to improve convergence spedd with a lower misadjustment. The least mean square (LMS) and the recursive least square (RLS) algorithms have been the hallmark of adaptive filtering. In this work we develop adaptive algorithms based on the even powers of the error inspired in the recursive lest square (RLS) algorithm. Namely recursive nom quadratic (RNQ) algorithm. The ideas is based on Widrow s least mean square fourth (LMF) algorithm. Fisrt we derive equations based on a singal even power of the error in order to obtain criterions that guarantee convergence. We also determine equations that measure the misadjustment and the time constant of the adaptive process of the RNQ algorithm. We work also, toward making the algorithm less sensitive to the size of the error in na alternative direction, by proposing a cost function which is a sum of the even powers of the error. This second approach bring the error explicitly to the RLS algorithm formulation by proposing a new cost function that preserves the measnsquare-error (MSE) solution, but allows for the exploitation of higher order moments of the error to speedup the converge of the algorithm. The main goal this work is to create form first principles (new cost functions ) a mechanism to include instantaneous error information in the RLS algorithm, make it track better, and allow for the design of the forgetting factor. As we will see the key aspecto of our approach is to include the error in the Kalman gain that effectively controls the speed of adaptation of the RLS algorithm.
Palavras-chave: Filtragem adaptativa
Função não-quadrática
Velocidade de convergência
Adaptive filtering
Non-quadratic function
Convergence speed
Área(s) do CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: BR
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: Engenharia
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: SILVA, Cristiane Cristina Sousa da. A ALGORITHM TYPE RLS BASED IN NON QUADRATIC SURFACES. 2013. 78 f. Tese (Doutorado em Engenharia) - Universidade Federal do Maranhão, São Luís, 2013.
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/550
Data de defesa: 19-Jul-2013
Appears in Collections:TESE DE DOUTORADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File SizeFormat 
Tese Cristiane Cristina.pdf4,3 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.