???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/487
Tipo do documento: Dissertação
Título: CLASSIFICAÇÃO DE TECIDOS DA MAMA A PARTIR DE IMAGENS MAMOGRÁFICAS EM MASSA E NÃO MASSA USANDO ÍNDICE DE DIVERSIDADE DE MCINTOSH E MÁQUINA DE VETORES DE SUPORTE
Título(s) alternativo(s): CLASSIFICATION OF TISSUE BREAST FROM MAMMOGRAPHIC IMAGES IN MASS AND NOT MASS USING INDEX OF DIVERSITY OF MCINTOSH AND SUPPORT VECTOR MACHINE
Autor: Carvalho, Péterson Moraes de Sousa 
Primeiro orientador: PAIVA, Anselmo Cardoso de
Primeiro coorientador: Silva, Aristófanes Corrêa
Primeiro membro da banca: Teixeira, Mario Antonio Meirelles
Resumo: O câncer de mama é o segundo tipo de câncer mais frequente no mundo e o que mais acomete as mulheres. Nos últimos anos, vários Sistemas de Detecção e Diagnóstico auxiliados por Computador (Computer Aided Detection/Diagnosis) têm sido desenvolvidos no intuito de auxiliar especialistas da área da saúde na detecção e diagnóstico de câncer, servindo como uma segunda opnião. O objetivo deste trabalho é apresentar uma metodologia de discriminação e classificação de regiões extraídas de mamografias em massa e não massa. Neste estudo, o Digital Database for Screening Mammography (DDSM) é usado. Para descrever a textura da região de interesse é aplicado o Índice de Diversidade de McIntosh, comumente usado em ecologia. O cálculo deste índice é proposto em quatro abordagens: através do Histograma, da Matriz de Co-ocorrência de Níveis de Cinza, da Matriz de Comprimentos de Corrida de Cinza e da Matriz de Comprimentos de Lacuna de Cinza. Para classificação das regiões em massa e não massa, é utilizado o classificador supervisionado Support Vector Machine (SVM). A metodologia apresenta resultados promissores para a classificação de massas e não massas, alcançando uma acurácia de 93,68%.
Abstract: Breast cancer is the second most common in the world and which more affects women. In recent years, several Computer Aided Detection/Diagnosis Systems has been developed in order to assist health specialists in the detection and diagnosis of cancer, serving as a second opinion. The aim of this paper is to present a methodology for discrimination and classification of regions extracted from mammograms in mass and non-mass. In this study, Digital Database for Screening Mammography (DDSM) is used. To describe the texture of the region of interest is applied McIntosh Diversity Index, commonly used in ecology. The calculation of this index is proposed in four approaches: through the Histogram, through the Gray Level Co-occurrence Matrix, through the Gray Level Run Length Matrix and through the Gray Level Gap Length Matrix. For the classification of regions in mass and non-mass, is used the supervised classificator Support Vector Machine (SVM). The methodology shows promising results for the classification of masses and non-masses, reaching an accuracy of 93,68%.
Palavras-chave: Mamografia
Índice de Diversidade de McIntosh
Máquina de Vetores de Suporte
Reconhecimento de Padrões
Mammography
McIntosh Diversity Index
Support Vector Machine
Pattern Recognition
Área(s) do CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: BR
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: Engenharia
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: CARVALHO, Péterson Moraes de Sousa. CLASSIFICATION OF TISSUE BREAST FROM MAMMOGRAPHIC IMAGES IN MASS AND NOT MASS USING INDEX OF DIVERSITY OF MCINTOSH AND SUPPORT VECTOR MACHINE. 2012. 77 f. Dissertação (Mestrado em Engenharia) - Universidade Federal do Maranhão, São Luís, 2012.
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/487
Data de defesa: 20-Apr-2012
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File SizeFormat 
Peterson.pdf1,33 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.