???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/4211
Full metadata record
DC FieldValueLanguage
dc.creatorBAPTISTA, João Eduardo Ribeiro-
dc.creator.Latteshttp://lattes.cnpq.br/4005511701086390por
dc.contributor.advisor1SILVA, Maria da Guia da-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5175196133230969por
dc.contributor.advisor-co1RODRIGUES, Anselmo Barbosa-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1674904723665743por
dc.contributor.referee1SILVA, Maria da Guia da-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5175196133230969por
dc.contributor.referee2RODRIGUES, Anselmo Barbosa-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1674904723665743por
dc.contributor.referee3ARAÚJO, Leandro Ramos de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5968839321163534por
dc.contributor.referee4CASTRO, José Filho da Costa-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/4120241155931257por
dc.contributor.referee5RAPOSO, Antonio Adolpho Martins-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/0123773426402221por
dc.date.accessioned2022-10-24T12:10:19Z-
dc.date.issued2022-09-16-
dc.identifier.citationBAPTISTA, João Eduardo Ribeiro. Planejamento de baterias em redes de distribuição inteligentes sob incerteza. 2022. 203 f. Tese (Programa de Pós-Graduação em Engenharia Elétrica/CCET) - Universidade Federal do Maranhão, São Luís.por
dc.identifier.urihttps://tedebc.ufma.br/jspui/handle/tede/tede/4211-
dc.description.resumoAtualmente, os sistemas de distribuição passam por um processo de transformação em redes elétricas inteligentes (REI). Uma das características esperadas de REI é que incorporem recursos energéticos distribuídos baseados em fontes renováveis, sobretudo solar. A falta de simultaneidade da produção energética destas fontes em relação à demanda pode resultar em problemas operacionais, dentre os quais destaca-se o risco de ocorrência de sobretensões. Por este motivo, espera-se que os sistemas de armazenamento de energia (SAE) desempenhem papel fundamental, pois permitem adequar os desvios entre a oferta de geração e a demanda, mitigando violações de tensão. No entanto, estes dispositivos têm alto custo, de forma que seus investimentos devem ser planejados de maneira a obter a melhor relação de custo-benefício. Neste contexto, propõe-se neste trabalho uma metodologia de planejamento de SAE à bateria (SAEB) para REI de distribuição com objetivo de controlar os riscos de violações dos índices de conformidade de tensão frente a incertezas de demanda, geração fotovoltaica e de indisponibilidades dos SAEB ocasionadas por falhas de seus componentes ou da rede de telecomunicação (RTCOM) usada nos seus controles. A metodologia se baseia em uma sequência de estudos que resulta no número, posicionamento e dimensões dos SAEB e configuração da RTCOM, além de permitir ao engenheiro de planejamento testar reforços da solução frente a incertezas por meio de investimentos em tapes comutáveis sob carga e melhorias da disponibilidade da RTCOM. Para isso utilizam-se quatro subproblemas: um problema de alocação ótima de SAEB, um método de obtenção de taxas de falha equivalentes para os bancos de baterias, o projeto ótimo da RTCOM e a avaliação probabilística da conformidade de tensão da REI utilizada para testar as soluções de planejamento frente a incertezas. O primeiro e o terceiro problemas são solucionados a partir de algoritmos genéticos, enquanto o segundo e último se baseiam em simulação Monte Carlo (SMC) sequencial. Embarcados ao modelo de alocação estão um modelo de otimização que determina os despachos típicos dos SAEB e um modelo de estimação da vida útil das baterias baseado nestes despachos. As estimativas de vida útil também são utilizadas para ajustar as distribuições dos tempos de falha das baterias que servem como parâmetros de entrada da SMC que gera taxas de falha equivalentes para os bancos de baterias coerentes com as condições operacionais esperadas. Já a SMC que avalia a conformidade de tensão utiliza tanto o mesmo modelo de despacho típico já utilizado pela alocação como também modelos de otimização que representam controles em tempo real para redespacho e para ajustes na potência reativa visando controle corretivo de tensão. Resultados avaliados em um sistema de 33 nós mostraram que a metodologia é capaz de produzir soluções de planejamento que reduzem os riscos de violações dos índices de conformidade de tensão para valores satisfatórios.por
dc.description.abstractCurrently, power distribution systems are undergoing a transformation towards smart grids (SGs). One of the expected characteristics of the SGs is that they incorporate distributed energy resources based on renewable sources, especially solar. The lack of simultaneity between energy production of these sources and demand may result in operational issues, from which the risk of overvoltage stands out. Due to that, it is expected that energy storage systems (ESSs) play a key role in SG, since they allow to match the imbalances between demand and energy production, thus mitigating voltage violation issues. However, these devices are expensive, and therefore, the investments in ESS must be planned to obtain the best cost-benefit relation. In this context, a battery ESS (BESS) planning methodology for distribution SGs is proposed in this work, aiming to control the risk of voltage conformity indices violation subject to uncertainty regarding load, photovoltaic generation e BESS unavailabilities due to failures of their components or in the telecommunication network (TCN) used for their control. The methodology is based in a sequence of studies that result BESSs’ number, sites and sizes and the configuration of the TCN, while also allow the planning engineer to test improvements in the solution by using on load tap changer devices or or by increasing TCN’s availability. Four subproblems are used with this purpose: an optimal BESS allocation, a method for obtaining equivalent failure rates for the battery banks, the TCN optimal design and the SG’s voltage conformity probabilistic assessment used to test solution options face to uncertainty. The first and third problems are solved by genetic algorithms, while the second and the last are based on sequential Monte Carlo simulation (MCS) techniques. Embedded in the allocation model are an optimization model used to assess the typical BESS schedules and a useful lifetime prediction model based on that scheduling. The useful lifetime prediction is also used to fit time-to-failure distributions which ate the input of the MCS that generate BESSs’ equivalent failure rates which are coherent with the expected operational conditions. On the other hand, the MCS used to assess the voltage conformity uses not only the same schedule model used by the allocation but also two optimizations models which represent real time controls for BESS rescheduling and reactive power adjustments used for corrective voltage control. Results assessed in 33 node test system shown that the proposed methodology is capable of producing planning solutions that reduce the voltage conformity indices violation risk to tolerable levels.eng
dc.description.provenanceSubmitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2022-10-24T12:10:19Z No. of bitstreams: 1 JOÃOEDUARDORIBEIROBAPTISTA.pdf: 4171165 bytes, checksum: 56f1a37c3be272edcc967df208f05668 (MD5)eng
dc.description.provenanceMade available in DSpace on 2022-10-24T12:10:19Z (GMT). No. of bitstreams: 1 JOÃOEDUARDORIBEIROBAPTISTA.pdf: 4171165 bytes, checksum: 56f1a37c3be272edcc967df208f05668 (MD5) Previous issue date: 2022-09-16eng
dc.description.sponsorshipFAPEMApor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal do Maranhãopor
dc.publisher.departmentDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETpor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFMApor
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETpor
dc.rightsAcesso Abertopor
dc.subjectsistemas de distribuição inteligentes;por
dc.subjectgerenciamento de energia;por
dc.subjectcontrole de tensão;por
dc.subjectsistemas de armazenamento de energia;por
dc.subjectsistemas ciberfísicos;por
dc.subjectmétodos probabilísticospor
dc.subjectSimulação Monte Carlo.por
dc.subjectsmart distribution systems;eng
dc.subjectenergy management;eng
dc.subjectvoltage control;eng
dc.subjectenergy storage systems;eng
dc.subjectcyber-physic systems;eng
dc.subjectprobabilistic methods;eng
dc.subjectMonte Carlo Simulation.eng
dc.subject.cnpqEngenharia Elétricapor
dc.titlePlanejamento de Baterias em Redes de Distribuição Inteligentes sob Incertezapor
dc.title.alternativeBattery Planning in Smart Distribution Networks under Uncertaintyeng
dc.typeTesepor
Appears in Collections:TESE DE DOUTORADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
JOÃOEDUARDORIBEIROBAPTISTA.pdfTese de Doutorado4,07 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.