Exportar este item: EndNote BibTex

Use este identificador para citar ou linkar para este item: https://tedebc.ufma.br/jspui/handle/tede/tede/301
Tipo do documento: Dissertação
Título: Modelagem Estocástica: Teoria, Formulação e Aplicações do Algoritmo LMS
Autor: Silva, Wilander Testone Pereira da 
Primeiro orientador: Fonseca Neto, João Viana da
Resumo: Nesta dissertação de mestrado apresenta-se uma investigação em aspectos de modelagem estocástica, convergência e aplicações dos algoritmos de mínimos quadrados médio (LMS), mínimos quadrados médio normalizado (NLMS) e mínimos quadrados médio normalizado proporcional (PNLMS). Particularmente, aborda-se o Algoritmo LMS em sua extensão, definindo conceitos, demonstrações de propriedades, algoritmos e análise de convergência, Curva de Aprendizagem e Desajuste do referido algoritmo. Dentro do contexto de redes de sensores e filtragem espacial avalia-se o desempenho dos algoritmos por meio da curva de aprendizagem dos referidos algoritmos para os arranjos de antenas adaptativas. No contexto intrínseco da aplicação em engenharia elétrica, isto é, na área de telecomunicações procura-se a melhor alternativa e almeja-se a otimização do processo de transmissão/recepção para eliminar interferências e a menor quantidade de elementos em arranjos de antenas adaptativas, que são conhecidas como antenas inteligentes, e que tem como objetivo atingir uma relação Sinal Ruído para valor pequeno, com número adequado de elementos. O desempenho do algoritmo LMS é avaliado em redes de sensores que é caracterizada por um arranjo de antenas. Resultados de simulações computacionais para diferentes cenários de operação mostram que os algoritmos apresentam bons resultados numéricos de convergência para uma escolha adequada dos parâmetros relacionados com a taxa de aprendizagem que são associadas com suas curvas médias e com a conformação de feixes do arranjo em antenas inteligentes.
Abstract: In this dissertation we present a research in aspects of stochastic modeling, convergence and applications of least mean square (LMS) algorithm, normalized least mean square (NLMS) algorithm and proportionate normalized least mean square (PNLMS) algorithm. Specifically, the aim is to address the LMS algorithm in your extension, defining his concepts, demonstrations of properties, algorithms and analysis of convergence, Learning Curve and Misadjustment of the algorithm in question. Within of the context of sensor networks and spatial filtering is evaluated the performance of the algorithms by the learning curve of the referred algorithms for arrangements of adaptive antennas. In the intrinsic context of the application in electrical engineering, in area of telecommunications that seek the best alternative and aims to optimize the process of transmission/reception to eliminate interference, and the least amount of elements in adaptive antenna arrays, which they are known as smart antenna, which aims to reach a signal noise ratio for small value, with appropriate number of elements. The performance of the LMS algorithm is evaluated in sensor networks that is characterized by an antenna array. Results of computer simulations for different scenarios of operation show that the algorithms have good numerical results of convergence to a suitable choice of the parameters related with the rate of learning that are associated with their average curves and the beamforming of the smart antenna array.
Palavras-chave: Algoritmo LMS
Algoritmo NLMS
Algoritmo PNLMS
Filtragem Adaptativa
Modelagem Estocástica
Antenas Inteligentes
Redes de Sensores
LMS algorithm
NLMS algorithm
PNLMS algorithm
Adaptive Filtering
Stochastic Modeling
Smart Antennas
Sensor Network
Área(s) do CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Idioma: por
País: BR
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: Engenharia
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: SILVA, Wilander Testone Pereira da. Modelagem Estocástica: Teoria, Formulação e Aplicações do Algoritmo LMS. 2016. 107 f. Dissertação (Mestrado em Engenharia) - Universidade Federal do Maranhão, São Luís, 2016.
Tipo de acesso: Acesso Aberto
URI: http://tede2:8080/tede/handle/tede/301
Data de defesa: 11-Mar-2016
Aparece nas coleções:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Arquivos associados a este item:
Arquivo TamanhoFormato 
Dissertacao-WilanderTestonePereiraSilva.pdf3,81 MBAdobe PDFBaixar/Abrir Pré-Visualizar


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.