???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/2946
Full metadata record
DC FieldValueLanguage
dc.creatorCOSTA, Silmery da Silva Brito-
dc.creator.Latteshttp://lattes.cnpq.br/0542819211562518por
dc.contributor.advisor1BRANCO, Maria dos Remédios Freitas Carvalho-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5449951869928014por
dc.contributor.advisor-co1SANTOS, Alcione Miranda dos-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2709550775435326por
dc.contributor.referee1BRANCO, Maria dos Remédios Freitas Carvalho-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5449951869928014por
dc.contributor.referee2SANTOS, Alcione Miranda dos-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2709550775435326por
dc.contributor.referee3MEDEIROS, Maria Nilza Lima-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2755510184384522por
dc.contributor.referee4GONÇALVES, Eloisa da Graça do Rosário-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/2449592677614097por
dc.contributor.referee5CALDAS, Arlene de Jesus Mendes-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/7214761052240294por
dc.date.accessioned2019-12-18T18:25:45Z-
dc.date.issued2019-11-01-
dc.identifier.citationCOSTA, Silmery da Silva Brito. Análise espacial de casos prováveis de Dengue, Chikungunya e Zika no Maranhão, Brasil.. 2019. 119 f. Tese(Programa de Pós-Graduação em Saúde Coletiva/CCBS) - Universidade Federal do Maranhão, São Luis,2019.por
dc.identifier.urihttps://tedebc.ufma.br/jspui/handle/tede/tede/2946-
dc.description.resumoDengue, chikungunya e zika são arboviroses de extrema relevância para a saúde pública mundial, tendo em vista os danos que causam para a população e impactos econômicos e sociais nos países atingidos. Este estudo ecológico utilizou análise espacial de casos prováveis de dengue, chikungunya e zika notificados no Sistema de Informação de Agravos de Notificação (SINAN) no Estado do Maranhão, Brasil, no período de 2015 a 2016. No primeiro artigo, analisou-se espacialmente a distribuição dos casos prováveis de dengue, chikungunya e zika no Maranhão, relacionando-a com fatores sociodemográficos, econômicos, Índice de Desempenho do Sistema Único de Saúde (IDSUS) e infestação vetorial. Considerou-se como unidade de análise os municípios. Utilizou-se o software Geoda versão 1.10 para cálculo dos índices de Moran Global e Local. Na análise univariada o índice de Moran Global identificou uma autocorrelação significativa das taxas de incidência de dengue (I=0,10; p=0,009) e zika (I=0,07; p=0,03). Na análise bivariada houve correlação espacial positiva entre dengue e densidade populacional (I=0,31; p<0,001) e correlação negativa com o IDSUS pela cobertura de atenção básica (I=-0,08; p=0,01). Em relação a chikungunya, houve correlações espaciais positivas com densidade populacional (I=0,06; p=0,03) e o Índice de Desenvolvimento Humano Municipal (IDHM) (I=0,10; p=0,002) e correlação negativa com o índice de Gini (I=-0,01; p<0,001) e o IDSUS pela cobertura de atenção básica (I=-0,18; p<0,001). Por fim, identificou-se correlações espaciais positivas entre zika e a densidade populacional (I=0,13; p=0,005) e o IDHM (I=0,12; p<0,001), assim como correlação negativa com o índice de Gini (I=-0,11; p<0,001) e o IDSUS por cobertura de atenção básica (I=-0,05; p=0,03). No segundo artigo, analisou-se a distribuição espacial dos casos das três doenças georreferenciados no município de São Luís, Maranhão, no período de 2015 a 2016, relacionando-a com fatores socioambientais, econômicos e com pontos estratégicos. A unidade de análise foi o setor censitário. Utilizou-se os softwares Arcgis versão 10.4.1 para georreferenciamento dos casos das doenças, QGIS versão 3.6.0 para agregar os casos por setor censitário, GeoDa 1.10 para o índice de Moran Global e Local e os modelos espaciais e para o modelo clássico o software Stata® 14.0. A partir do índice de Moran Global, identificou-se autocorrelação espacial significativa da incidência das três arboviroses (I=0,55; p=0,001). O modelo que apresentou melhor desempenho foi o Spatial Lag, com maior valor do Log da Verossimilhança, ampliação do poder explicativo (R2=0,508) e redução dos valores do critério de informação de Akaike (2059,28) e do critério bayesiano Schwarz (2099,46). Nesse modelo apenas a variável percentual de lixo acumulado no entorno permaneceu com correlação positiva estatisticamente significativa (p=0,03). Os achados sugerem que fatores sociodemográficos influenciaram na ocorrência de dengue, chikungunya e zika no estado do Maranhão. Em São Luís o descarte inadequado dos resíduos sólidos teve impacto na ocorrência das três arboviroses.por
dc.description.abstractDengue, chikungunya and zika are extremely relevant arboviruses for world public health, given the damage they cause to the population and economic and social impacts in the affected countries. This ecological study used spatial analysis of probable cases of dengue, chikungunya and zika reported in the Notified Disease Information System (SINAN) in the State of Maranhão, Brazil, from 2015 to 2016. In the first article, the distribution of probable cases of dengue, chikungunya and zika in Maranhão was spatially analyzed, relating it to sociodemographic and economic factors, Unified Health System Performance Index (IDSUS) and vector infestation. The unit of analysis was the municipalities. Geodaversion 1.10 software was used to calculate Moran Global and Local indexes. In the univariate analysis, the Moran Global Index identified a significant autocorrelation of dengue (I = 0.10; p = 0.009) and Zika (I = 0.07; p = 0.03) incidence rates. In the bivariate analysis, there was a positive spatial correlation between dengue and population density (I = 0.31; p <0.001) and a negative correlation with IDSUS for primary care coverage (I = -0.08; p = 0.01). Regarding chikungunya, there were positive spatial correlations with population density (I = 0.06; p = 0.03) and the Municipal Human Development Index (MHDI) (I = 0.10; p = 0.002) and negative correlation with Gini index (I = -0.01; p <0.001) and IDSUS for primary care coverage (I = - 0.18; p <0.001). Finally, positive spatial correlations were identified between zika and population density (I = 0.13; p = 0.005) and MHDI (I = 0.12; p <0.001), as well as negative correlation with Gini index. (I = -0.11; p <0.001) and IDSUS by primary care coverage (I = - 0.05; p = 0.03). In the second article, we analyzed the spatial distribution of the cases of the three georeferenced diseases in the municipality of São Luís, Maranhão, from 2015 to 2016, relating it to socioenvironmental factors, economic and strategic points. The unit of analysis was the census sector. Arcgis version 10.4.1 software was used for georeferencing of disease cases, QGIS version 3.6.0 to aggregate cases by census sector, GeoDa 1.10 for the Global and Local Moran Index and spatial models, and for the classical model, the Stata software. ® 14.0. From the Moran Global Index, significant spatial autocorrelation of the incidence of the three arboviruses was identified (I = 0.55; p = 0.001). The model with the best performance was the SpatialLag, with the highest likelihood log value, the explanatory power (R2 = 0.508) and the Akaike information criterion (2059.28) and the Bayesian Schwarz criterion (2099; 46). In this model only the percentage variable of accumulated garbage in the surroundings remained with a statistically significant positive correlation (p = 0.03). The findings suggest that sociodemographic factors influenced the occurrence of dengue, chikungunya and zika in the state of Maranhão. In São Luís the improper disposal of solid waste had an impact on the occurrence of the three arboviruses.eng
dc.description.provenanceSubmitted by Maria Aparecida (cidazen@gmail.com) on 2019-12-18T18:25:45Z No. of bitstreams: 1 Silmery da Silva B.C..pdf: 9076342 bytes, checksum: aea358f49eb73c7cd40bc9e72e4d6c7b (MD5)eng
dc.description.provenanceMade available in DSpace on 2019-12-18T18:25:45Z (GMT). No. of bitstreams: 1 Silmery da Silva B.C..pdf: 9076342 bytes, checksum: aea358f49eb73c7cd40bc9e72e4d6c7b (MD5) Previous issue date: 2019-11-01eng
dc.description.sponsorshipCNPqpor
dc.description.sponsorshipFAPEMApor
dc.description.sponsorshipCAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal do Maranhãopor
dc.publisher.departmentDEPARTAMENTO DE PATOLOGIA/CCBSpor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFMApor
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM SAÚDE COLETIVA/CCBSpor
dc.rightsAcesso Abertopor
dc.subjectDengue;por
dc.subjectChikungunya;por
dc.subjectZika;por
dc.subjectAnálise Espacial;por
dc.subjectFatores socioeconômicos;por
dc.subjectFatores sociodemográficospor
dc.subjectDengue;eng
dc.subjectChikungunya;eng
dc.subjectZika;eng
dc.subjectSpatial analysis;eng
dc.subjectSocioeconomic factors;eng
dc.subjectSociodemographic Factorseng
dc.subject.cnpqDoenças Infecciosas e Parasitáriaspor
dc.titleANÁLISE ESPACIAL DE CASOS PROVÁVEIS DE DENGUE, CHIKUNGUNYA E ZIKA NO MARANHÃO, BRASIL.por
dc.title.alternativeSPACE ANALYSIS OF PROBABLE CASES OF DENGUE, CHIKUNGUNYA AND ZIKA IN MARANHÃO, BRAZIL.eng
dc.typeTesepor
Appears in Collections:TESE DE DOUTORADO - PROGRAMA DE PÓS-GRADUAÇÃO EM SAÚDE COLETIVA

Files in This Item:
File Description SizeFormat 
Silmery da Silva B.C..pdfTese de Doutorado8,86 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.