???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1897
Tipo do documento: Tese
Título: Método de detecção de massas em mamas densas usando análise de componentes independentes
Título(s) alternativo(s): Method for Detection Masses in Dense Breast using Independent Component Analysis
Autor: SILVA, Luis Claudio de Oliveira 
Primeiro orientador: BARROS FILHO, Allan Kardec Duailibe
Primeiro membro da banca: SANTANA, Ewaldo Eder Carvalho
Segundo membro da banca: FONSECA NETO, João Viana da
Terceiro membro da banca: RIBEIRO, Aurea Celeste da Costa
Quarto membro da banca: OLIVEIRA, Fausto Lucena de
Resumo: O câncer de mama é o segundo tipo de câncer que mais afeta mulheres no mundo, perdendo apenas para o câncer de pele não melanoma. A densidade da mama pode di cultar a localização de massas, especialmente em estágios iniciais. Neste trabalho, propõe-se o uso de análise de componentes independentes para detectar e segmentar lesões em mamas densas. Vários trabalhos sugerem o uso do diagnóstico auxiliado por computador, aumentando a sensibilidade para acima de 90% na detecção de câncer em mamas não densas, no entanto, existem poucos estudos publicados sobre a detecção em mamas densas. Para analisar a e ciência do método proposto em relação a outras técnicas de segmentação, comparamos o desempenho com a análise de componentes principais. Para medir a qualidade da segmentação obtida pelos dois métodos, será utilizada uma medida de sobreposição de área. Para veri car se houve diferença entre os resultados dos métodos propostos na detecção de lesões em mamas não densas e nas mamas densas, foi utilizado um teste estatístico para duas proporções. Os resultados experimentais usando os bancos de dados Mini-MIAS e DDSM mostraram uma acurácia de 92,71% na detecção de massas em mamas não densas e 79,17% em mamas densas. Todas as experiências mostraram que os ltros de ICA usados têm um melhor desempenho para detectar lesões em mamas densas, em comparação com PCA. Contrariamente aos trabalhos anteriores, nossos experimentos mostraram que existe realmente uma diferença signi cativa entre a detecção de massas em mamas densas e não densas. Este estudo pode ajudar o especialista a detectar lesões em mamas densas
Abstract: Breast cancer is the second type of cancer that most a ects women in the world, losing only for non melanoma skin cancer. Breast density can hinder the location of masses, especially in early stages. In this work, the use of independent component analysis for detecting and segmentation lesions in dense breasts is proposed. Several works suggests the use of computer aided diagnosis, increasing sensitivity to over 90% in detecting cancer in non dense breasts, however there are few published studies about detecting in dense breasts. To analyse its e ciency in relation to other segmentation techniques, we compare the performance with principal component analysis. To measure the quality of the segmentation obtained by the two methods, a area overlay measure will be used. To verify if there was any di erence between the results of the proposed methods in the detection of lesions in nondense breasts and in dense breasts, a statistic test for two proportions was used. Experimental results on the Mini-MIAS and DDSM database showed an accuracy of 92.71% in detecting masses in nondense and 79.17% in dense breasts. All experiments showed that the ICA lters have a better performance for detect lesions in dense breast, compared with PCA. Contrary to previous works, our experiments showed that there is actually a signi cant di erence between the detection of masses in dense and nondense breasts. This study can help specialist to detect lesions in dense breast.
Palavras-chave: Análise de Imagem Médica
Mamas Densas
Filtragem
Agrupamento
Segmentação de Imagens
Medical Image Analysis
Dense Breast
Filtering
Clustering
Image Segmentation
Área(s) do CNPq: Processamento Gráfico
Cancerologia
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: SILVA, Luis Claudio de Oliveira. Método de detecção de massas em mamas densas usando análise de componentes independentes. 2017. 70 f. Tese (Doutorado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017.
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1897
Data de defesa: 27-Jul-2017
Appears in Collections:TESE DE DOUTORADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
LuisClaudioSilva.pdfTese4,29 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.