???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1863
Tipo do documento: Dissertação
Título: Análise de Ocorrências em Transformadores do SDEE usando Redes Neurais Artificiais MLP.
Título(s) alternativo(s): Analysis of Occurrences in SDEE Transformers using MLP Artificial Neural Networks.
Autor: NINA, Diogo Luis Figueiredo 
Primeiro orientador: FONSECA NETO, João Viana da
Resumo: A operação e manutenção do sistema elétrico requerem atenção, diagnósticos precisos em caso de falhas e agilidade na recomposição do sistema. Por outro lado, sistemas elétricos têm um elevado risco, onde cada manobra precisa ser cuidadosamente planejada e executada, pois erros podem ser fatais. A boa operação e manutenção do sistema elétrico consistem em encontrar o ponto de equilíbrio entre esses dois extremos, atuando de forma cautelosa, porém ágil. Com esse intuito, propomos o desenvolvimento de um sistema inteligente dotado da capacidade de detectar padrões anormais no sinal elétrico, fornecendo apoio à decisão na operação em tempo real do SDEE, a partir da análise das correntes primárias e secundárias de transformadores de força de subestações de energia elérica, incluindo aprendizado a cada nova informação integrada ao sistema. O desafio deste estudo é pesquisar e desenvolver um método baseado em RNA para classificação de padrões e apoio à decisão, visando a detecção e/ou recuperaçao de falhas. O método diferencia perturbações que culminarão em uma falta de perturbações geradas por transitórios na rede elétrica (por exemplo o afundamento de tensão gerado pela partida de uma máquina). Um sistema supervisório SCADA foi desenvolvido para hospedar o código de implementação da RNA, além de fornecer uma interface para o Operador, gerando alarmes visuais e sonoros e mensagens orientando a retomada do sistema. O método proposto foi avaliado utilizando-se dados reais coletados diretamente de relés digitais de proteção de transformadores de subestações do sistema da CEMAR, obtendo-se excelentes resultados. A RNA desenvolvida neste estudo apresentou desempenho satisfatório na classificação dos sinais a ela apresentados, detectando corretamente as faltas.
Abstract: Power system operation and maintenance require attention, precise diagnostics on failure and agility on system recovery. On the other hand, power systems involve high risks, where each operation needs to be carefully planned and executed, once errors can be fatal. Power system satisfactory operation and maintenance consist on finding equilibrium between these extremes, acting on a cautious, but agile, way. For this purpose, we propose the development of an intelligent system with the ability of detecting abnormal patterns on the electrical signal, providing support for decisions on Power Distribution System real time operation, from the analysis of power substation transformers primary and secondary currents, including learning at each new information acquired by the system. The challenge of this study is to research and develop a method based on ANN for classifying patterns and providing support for decisions, aiming fault detection and/or fault recovery. The method di↵erentiates disturbances that will lead to faults from disturbances generated by transients on power system (for example an undervoltage caused by powering on an engine). A SCADA supervisory system was developed to contain ANN implementation code and also to provide an interface for Operators, generating visual and sound alarms and messages guiding system recovery. The proposed method was evaluated using real data collected from transformers protection digital relays of CEMAR system substations, achieving excellent results. The ANN developed on this study presented satisfactory performance classifying signals and detecting faults properly.
Palavras-chave: Automação de Subestações; Faltas em Subestações; SDEE; Rede Neural Artificial; Sistema de apoio à decisão; Sistema SCADA
Substations Automation; Faults on Substations; SDEE; Artificial Neural Network; Decision Support System; SCADA System
Área(s) do CNPq: Sistemas de Informação
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: NINA, Diogo Luis Figueiredo. Análise de Ocorrências em Transformadores do SDEE usando Redes Neurais Artificiais MLP. 2012. 89 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2012.
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1863
Data de defesa: 3-Oct-2012
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
Diogo Luis.pdfDissertação de Mestrado4,27 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.