???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1845
Tipo do documento: Dissertação
Título: DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
Título(s) alternativo(s): Mass detection in mammography images using SIMPSON's diversity index and vectoring machine support.
Autor: NUNES, André Pereira 
Primeiro orientador: SILVA, Aristófanes Corrêa
Primeiro coorientador: PAIVA, Anselmo Cardoso de
Resumo: O câncer de mama é uma das maiores causas de mortalidade entre as mulheres no mundo todo. Atualmente, a análise da radiografia da mama é o recurso mais utilizado na detecção precoce desse tipo de câncer, pois possibilita a identificação de anomalias em sua fase inicial, fator fundamental para o sucesso do tratamento. A sensibilidade desse tipo de exame, no entanto, depende de diversos fatores, tais como tamanho e localização das anomalias, densidade do tecido mamário, qualidade dos recursos técnicos e habilidade do radiologista. Este trabalho apresenta uma metodologia para detecção de massas em imagens digitais de mamografias que poderá auxiliar o especialista em sua análise. O método proposto utiliza o algoritmo de agrupamento K-Means e a técnica de Template Matching para segmentar as regiões suspeitas de conterem massas. Em seguida, medidas de geometria e textura são extraídas de cada uma dessas regiões, sendo a textura descrita através do Índice de Diversidade de Simpson, uma estatística usada na Ecologia para mensurar a biodiversidade de um ecossistema. Finalmente, essas informações são submetidas a uma Máquina de Vetores de Suporte para que as regiões suspeitas sejam classificadas em massas ou não massas. A metodologia foi testada com 650 imagens mamográficas obtidas da base de dados DDSM, atingindo 83,94% de acurácia, 83,24% de sensibilidade, e 84,14% de especificidade em média.
Abstract: Breast cancer is one of the major causes of mortality among women throughout the world. Presently, the analysis of breast radiography is the most used method to early detection of this kind of cancer. It enables the identification of anomalies at their initial stage, which is a fundamental factor for success in the treatment. The sensitivity of this kind of exam, although, depends on several factors, such as the size and the location of the abnormalities, density of the breast tissue, quality of the technical resources and radiologist's ability. This work presents a methodology that uses the K-Means clustering algorithm and the Template Matching technique for segmentation of suspicious regions. Next, geometry and texture features are extracted from each of these regions, being the texture described by the Simpson's Diversity Index, a statistic used in Ecology to measure the biodiversity of an ecosystem. Finally, this information is submitted to a Support Vector Machine so that the suspicious regions are classified into masses and non-masses. The methodology was tested with 650 mammographic images from the DDSM database, achieving 83.94% of accuracy, 83.24% of sensibility and 84.14% of specificity in average.
Palavras-chave: Mamografia; Detecção Auxiliada por Computador; K-Means; Template Matching; Índice de Diversidade de Simpson; Máquina de Vetores de Suporte
Mammography; Computer-Aided Detection; K-Means; Template Matching; Simpson’s Diversity Index; Support Vector Machine
Área(s) do CNPq: Modelos Analíticos e de Simulação
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: NUNES, André Pereira. DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.. 2009. [84 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] .
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1845
Data de defesa: 20-Feb-2009
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
Andre Pereira.pdfDissertação de Mestrado3,03 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.