???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1830
Tipo do documento: Dissertação
Título: Automação e Otimização de Controle via MQ e RNA para Redução das Emissões de Gases Causadores de Efeito Estufa (GHG) Geradas por Plantas de Alumínio.
Título(s) alternativo(s): Automation and optimization of control to consider MQ and RNA for Reducing greenhouse gases emissions (GHG) Generated by aluminum plants.
Autor: NAGEM, Nilton Freixo 
Primeiro orientador: FONSECA NETO, João Viana da
Resumo: Atualmente a maior regulamentação e preocupação mundial com o ambiente estão levando as indústrias de alumínio ao desenvolvimento de um modelo sustentável de produção, com o escopo de reduzir os impactos ambientais de sua atividade econômica. Assim, tornam-se imprescindíveis melhorias nas práticas operacionais e de controle de sua produção. Tais necessidades têm como foco principal a redução dos gases de efeito estufa (Green Houses Gases - GHG), redução do consumo de energia e aumento de produtividade. Como alternativas tecnológicas para mitigar o problema ambiental de Green Houses Gases, os “alimentadores inteligentes” para as cubas com alimentação Point Feeder e o desenvolvimento de novos controles para o ajuste automático da quantidade de “manifolds” a serem quebrados durante a alimentação para cubas Side Break são soluções viáveis. Os alimentadores “inteligentes” mostram uma redução da freqüência de efeito anódico e conseqüentemente no tempo em que a cuba fica em efeito anódico. Para as cubas VSS Side Break foi possível criar uma matriz de decisão através dos valores dos estimadores MQ utilizando a inclinação e curvatura da resistência para o ajuste de “manifolds”. Outra abordagem foi a utilização de redes neuronais para determinar a forma da curva de resistência, com a utilização de redes neuronais probabilísticas.
Abstract: Nowadays the regulatory restrictions and global concern with the environment are leading the aluminum industry to develop a sustainable model production, with propose to reduce the environmental impacts of its economic activity. Thus, becomes necessary improvements in the operational and control standards for the aluminium production. These needs have major objectives, decrease green house gases (GHG) energy consumption and increase in productive. As technological alternatives such as smart feeders for Point Feeders pots and the development of new control for automatic adjust of the number of manifolds to be broke in the next cycle for Side Break pots will help to improve the decrease of Green Houses Gases. The smart feeders had a significant decrease in the anode effect frequency and consequently a decrease in anode effect time too. For the VSS Side Break pots were possible to create a decision matrix using the Least Square estimation (LS) of the resistance slope and curvature to adjust the number of manifolds. Another approach that showed promising results in the simulation was the neuronal networks for pattern recognition, especial class knows by probabilistic neural network.
Palavras-chave: Alumínio; Gases de Efeito Estufa; Controle de Alumina; Alimentadores Inteligentes; Mínimos Quadrados; Redes Neuronais Probabilísticas
Aluminium; Green Houses Gases; Feed Control;Smart Feeders; Least Square; Probabilistic Neural Networks
Área(s) do CNPq: Controle Ambiental
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: NAGEM, Nilton Freixo. Automação e Otimização de Controle via MQ e RNA para Redução das Emissões de Gases Causadores de Efeito Estufa (GHG) Geradas por Plantas de Alumínio.. 2009. [122 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] .
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1830
Data de defesa: 6-Feb-2009
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
Nagem.pdfDissertação de Mestrado4,67 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.