???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1774
Tipo do documento: Dissertação
Título: Técnicas de inteligência artificial aplicadas na análise de mercados elétricos com inserção de geração eólica e de sistemas de armazenamento de energia nas redes elétricas de potência.
Título(s) alternativo(s): Artificial intelligence techniques applied to the analysis of electrical markets with insertion of wind power and energy storage systems on power grids.
Autor: SARAIVA, Felipe Oliveira Silva 
Primeiro orientador: PAUCAR, Vicente Leonardo
Resumo: Os preços marginais locacionais (LMPs – Locational Marginal Prices) consistem em diretrizes financeiras mercadologicamente indispensáveis para a indústria da eletricidade, os quais norteiam grande parte dos projetos e deliberações no âmbito dos mercados elétricos. No panorama vigente dos mercados elétricos, as plantas de geração eólica e os sistemas de armazenamento de energia vêm progressiva e ininterruptamente se revelando alternativas de suprimento de eletricidade cada vez mais relevantes e viáveis. Neste trabalho, é formulada uma metodologia genérica baseada em técnicas de inteligência artificial (IA) cuja aplicação tem o objetivo de computar e decompor os LMPs associados às barras constituintes de um sistema elétrico de potência (SEP) integrado por geradores convencionais, plantas de geração eólica e por sistemas de armazenamento de energia. Na metodologia IA proposta, o modelo de fluxo de potência ótimo (FPO) sobre o qual se alicerça o cômputo e a decomposição dos LMPs associados às barras de um SEP, leva em consideração a volatilidade inerente ao perfil comportamental dos ventos, os riscos associados à assunção de níveis previamente programados de potência proveniente da geração eólica e as peculiaridades operativas concernentes aos sistemas de armazenamento de energia. Adotando-se os modelos matemáticos e computacionais dos algoritmos de otimização por enxame de partículas (PSO – Particle Swarm Optimization), a metodologia IA proposta foi devidamente implementada e aplicada na aquisição e decomposição dos LMPs associados às barras constituintes de sistemas-testes submetidos a diferentes cenários operativos envolvendo centrais de geração convencionais, plantas de geração eólica e sistemas de armazenamento de energia.
Abstract: The locational marginal prices (LMPs) are essential financial guidelines for the electricity industry, which orientates most of the projects and deliberations in electrical market environments. In current scenario of the electricity markets, wind power plants and energy storage systems have been revealing itself as feasible and relevant electrical energy supply alternatives. In this work a generic methodology based on artificial intelligence (AI) techniques is formulated and applied to the calculation and decomposition of LMPs of electric power systems (EPS) with the insertion of energy storage systems and wind farms. In the proposed AI-based methodology the optimal power flow (OPF) model, on which the calculation and decomposition of LMP is based, considers the wind behavior profile volatility, the risks of wind power levels previously scheduled, and the energy storage systems operative peculiarities. The proposed AI-based methodology takes into account the mathematical and computational models of the particle swarm optimization (PSO) algorithm. This proposal was properly implemented and applied for the computation and decomposition of LMPs of test systems and considering different operative scenarios involving conventional power plants, wind farms, and energy storage systems.
Palavras-chave: Preços marginais locacionais; técnicas de inteligência artificial; geração eólica; sistemas de armazenamento de energia; sistemas elétricos de potência
Locational marginal prices; artificial intelligence techniques; wind farms; energy storage systems; electric power systems
Área(s) do CNPq: Sistemas Elétricos de Potência
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: SARAIVA, Felipe Oliveira Silva. Técnicas de inteligência artificial aplicadas na análise de mercados elétricos com inserção de geração eólica e de sistemas de armazenamento de energia nas redes elétricas de potência.. 2017. [171 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] .
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1774
Data de defesa: 17-Feb-2017
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
Felipe Oliveira.pdfDissertação de Mestrado3,1 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.