???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1742
Tipo do documento: Dissertação
Título: Análise do efeito da precisão finita no algoritmo adaptativo sigmoidal
Título(s) alternativo(s): Analysis of the effect of finite precision on the sigmoidal adaptive algorithm
Autor: Fonseca, José de Ribamar Silva 
Primeiro orientador: BARROS FILHO, Allan Kardec Duailibe
Primeiro coorientador: Cavalcante, André Borges
Resumo: A filtragem adaptativa constitui atualmente uma ferramenta importante no processamento estatístico de sinais, especialmente quando é necessário processar sinais provenientes de ambientes com estatísticas desconhecidas que variam com o tempo. O estudo de filtragem adaptativa foi impulsionado com o desenvolvimento do algoritmo Least Mean Square (LMS) em 1960. Desde então outros algoritmos adaptativos têm surgido com um desempenho superior ao algoritmo LMS em relação ao desajuste e à taxa de convergência. Entre eles, o algoritmo Sigmoidal (SA) que se apresentou superior ao LMS, em relação a taxa de convergência e o desajuste em suas implementações na forma analógica. Nos dispositivos de hardware, tais como DSPs, Microcontroladores e FPGAs, os algoritmos adaptativos são implementados na forma digital, onde a precisão é finita, em geral, com aritmética de ponto fixo. Quando os filtros adaptativos são implementados em precisão finita alguns efeitos podem afetar o seu desempenho. Em última análise, levar à divergência devido aos erros de quantização especificados no processo de aproximação dos valores das variáveis envolvidas no processamento adaptativo de seus valores originais. Assim, este trabalho propõe analisar o desempenho do algoritmo adaptativo Sigmoidal (SA) em precisão nita, quando implementado utilizando aritmética de ponto xo. Em particular, a análise de sua curva de desempenho e o desajuste, comparando-os em diferentes comprimentos de palavras (número de bits). Os resultados apresentados neste trabalho propõe uma aproximação em série de Taylor do gradiente da função de custo Ln(cosh αe) do algoritmo SA para implementação em precisão finita. Analisamos a sua curva de desempenho para diferentes comprimentos de palavras. Mostra-se que o algoritmo apresenta estabilidade em seu desempenho em relação à convergência, para diferentes comprimentos de palavras, e que o aumento no nível do desajuste em estado estacionário é sensível ou influenciado pela quantização dos valores das variáveis envolvidas nos cálculos desse algoritmo.
Abstract: The adaptive filtering is currently an important tool in the statistical processing of signals, especially when it is necessary to process signals from environments with unknown statistics varying with time. The adaptive filtering study was driven by the development of the Least Mean Square algorithm (LMS) in 1960. Since then other adaptive algorithms have come up with a better performance than LMS algorithm with respect to misadjustment and convergence rate. Among them, the Sigmoidal algorithm (SA) which showed superior to the LMS, for the convergence rate and the mismatch in their implementations infinite precision. In hardware devices such as DSPs, microcontrollers and FPGAs, adaptive algorithms are implemented in finite precision, in general, fixed point arithmetic. When the adaptive filters are implemented in finite precision some effects can affect their performance. Ultimately lead to divergence due to quantization errors specified in the approximation process of the variables involved in the adaptive processing of their original values. Thus, this article aims to analyze the performance of the adaptive algorithm Sigmoidal (SA) in finite precision when implemented using fixed-point arithmetic. In particular, the analysis of its performance curve and mismatch, comparing them in different word lengths (number of bits). The results presented in this article proposes a series of Taylor Ln gradient of cost function (cosh αe) algorithm SA for implementation in finite precision. We analyze its performance curve for different lengths of words. It shows that the algorithm is stable in its performance compared to convergence to different lengths of words, and that the increase in mismatch level at steady state is sensitive or afected by the quantization of the variables involved in the calculations of this algorithm.
Palavras-chave: Filtros Adaptativos
Quantização
Aritmética de Ponto-Fixo
Sigmoidal
Adaptive Filters
Quantization
Fixed-Point Arithmetic
Sigmoidal
Área(s) do CNPq: Matemática da Computação
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: FONSECA, José de Ribamar Silva. Análise do efeito da precisão finita no algoritmo adaptativo sigmoidal. 2017. 64 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017.
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1742
Data de defesa: 16-Feb-2017
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
JoseRibamarFonseca.pdfDissertação2,02 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.