???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1723
Tipo do documento: Dissertação
Título: Metodologia evolutiva para previsão inteligente de séries temporais sazonais baseada em espaço de estados não-observáveis
Título(s) alternativo(s): EVOLUTIONARY METHODOLOGY FOR INTELLIGENT FORECAST SERIES SEASONAL TEMPORAL STATE SPACE-BASED NON-OBSERVABLE
Autor: Rodrigues Júnior, Selmo Eduardo 
Primeiro orientador: SERRA, Ginalber Luiz de Oliveira
Resumo: Esse trabalho propõe uma nova metodologia para modelagem baseada em uma Rede Neuro- Fuzzy Takagi-Sugeno (RNF-TS) evolutiva para a previsão de séries temporais sazonais. A RNF-TS considera as componentes não-observáveis extraídas a partir da série para evoluir, ou seja, adaptar e ajustar sua estrutura, sendo que a quantidade de regras fuzzy dessa rede pode aumentar ou ser reduzida conforme o comportamento das componentes. O método utilizado para extrair as componentes é uma versão recursiva desenvolvida nessa pesquisa baseada na técnica de Análise Espectral Singular (AES). A metodologia proposta tem como princípio dividir para conquistar, isto é, dividir um problema em subproblemas mais fáceis de lidar, realizando a previsão separadamente de cada componente já que apresentam comportamentos dinâmicos mais simples de prever. As proposições do consequente das regras fuzzy são modelos lineares no espaço de estados, sendo que os estados são os próprios dados das componentes não-observáveis. Quando há observações disponíveis da série temporal, o estágio de treinamento da RNF-TS é realizado, ou seja, a RNF-TS evolui sua estrutura e adapta seus parâmetros para realizar o mapeamento entre os dados das componentes e a amostra disponível da série temporal original. Caso contrário, se essa observação não está disponível, a rede aciona o estágio de previsão, mantendo sua estrutura fixa e usando os estados dos consequentes das regras fuzzy para realimentar os dados das componentes para a RNF-TS. A RNF-TS foi avaliada e comparada com outras técnicas recentes e tradicionais para previsão de séries temporais sazonais, obtendo resultados competitivos e vantajosos em relação a outras pesquisas. Este trabalho apresenta também um estudo de caso da metodologia proposta para detecção em tempo-real de anomalias baseada em dados de eletrocardiogramas de um paciente.
Abstract: This paper proposes a new methodology for modelling based on an evolving Neuro-Fuzzy Network Takagi-Sugeno (NFN-TS) for seasonal time series forecasting. The NFN-TS use the unobservable components extracted from the time series to evolve, i.e., to adapt and to adjust its structure, where the number of fuzzy rules of this network can increase or reduced according the components behavior. The method used to extract the components is a recursive version developed in this paper based on the Spectral Singular Analysis (SSA) technique. The proposed methodology has the principle divide to conquer, i.e., it divides a problem into easier subproblems, forecasting separately each component because they present dynamic behaviors that are simpler to forecast. The consequent propositions of fuzzy rules are linear state space models, where the states are the unobservable components data. When there are available observations from the time series, the training stage of NFN-TS is performed, i.e., the NFN-TS evolves its structure and adapts its parameters to carry out the mapping between the components data and the available sample of original time series. On the other hand, if this observation is not available, the network considers the forecasting stage, keeping its structure fixed and using the states of consequent fuzzy rules to feedback the components data to NFN-TS. The NFN-TS was evaluated and compared with other recent and traditional techniques for forecasting seasonal time series, obtaining competitive and advantageous results in relation to other papers. This paper also presents a case study of proposed methodology for real-time detection of anomalies based on a patient’s electrocardiogram data.
Palavras-chave: Previsão de Séries Temporais Sazonais
Componentes Não-Observáveis
Modelos no Espaço de Estados
Rede Neuro-Fuzzy Takagi-Sugeno Evolutiva
Análise Espectral Singular
Seasonal Time Series Forecasting
Unobservable Components
Space State Model
Evolving Neuro-Fuzzy Takagi-Sugeno
Singular Spectral Analysis
Área(s) do CNPq: Sistemas de Informação
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: RODRIGUES JÚNIOR, Selmo Eduardo. Metodologia evolutiva para previsão inteligente de séries temporais sazonais baseada em espaço de estados não-Observáveis. 2017. 134 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017.
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1723
Data de defesa: 26-Jan-2017
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
SelmoRodrigues.pdfDissertação1,34 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.