???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1688
Tipo do documento: Dissertação
Título: Algoritmos adaptativos LMS normalizados proporcionais: proposta de novos algoritmos para identificação de plantas esparsas
Título(s) alternativo(s): Proportional normalized LMS adaptive algorithms: proposed new algorithms for identification of sparse plants
Autor: CASTELO BRANCO, César Augusto Santana
Primeiro orientador: SOUZA, Francisco das Chagas de
Resumo: Neste trabalho, novas metodologias para otimizar a escolha dos parâmetros dos algoritmos adaptativos LMS normalizados proporcionais (PNLMS) são propostas. As abordagens propostas usam procedimentos baseados em dois métodos de otimização, a saber, os métodos da razão áurea e da busca tabu. Tais procedimentos são empregados para determinar os parâmetros ótimos em cada iteração do processo de adaptação dos algoritmos PNLMS e PNLMS melhorado (IPNLMS). A função objetivo adotada pelos procedimentos propostos é baseada no erro de estimação a posteriori. O estudo de desempenho realizado para avaliar o impacto dos parâmetros dos algoritmos PNLMS e IPNLMS no comportamento dos mesmos mostram que, com o auxílio de técnicas de otimização para escolher adequadamente tais parâmetros, o desempenho destes algoritmos pode ser melhorado, em termos de velocidade de convergência, para a identificação de plantas com elevado grau de esparsidade. O principal objetivo das metodologias propostas é melhorar a distribuição da energia de ativação entre os coeficientes dos algoritmos PNLMS e IPNLMS, usando valores de parâmetros que levam ao erro de estimação mínimo em cada iteração do processo de adaptação. Testes numéricos realizados (considerando diversos cenários nos quais a resposta impulsiva da planta é esparsa) mostram que as metodologias propostas alcançam velocidades de convergência superiores às dos algoritmos PNLMS e IPNLMS, além de outros algoritmos da classe PNLMS, tais como o algoritmo IPNLMS com controle de esparsidade (SCIPNLMS).
Abstract: This work proposes new methodologies to optimize the choice of the parameters of the proportionate normalized least-mean-square (PNLMS) adaptive algorithms. The proposed approaches use procedures based on two optimization methods, namely, the golden section and tabu search methods. Such procedures are applied to determine the optimal parameters in each iteration of the adaptation process of the PNLMS and improved PNLMS (IPNLMS) algorithms. The objective function for the proposed procedures is based on the a posteriori estimation error. Performance studies carried out to evaluate the impact of the PNLMS and IPNLMS parameters in the behavior of these algorithms shows that, with the aid of optimization techniques to choose properly such parameters, the performance of these algorithms may be improved in terms of convergence speed for the identification of plants with high sparseness degree. The main goal of the proposed methodologies is to improve the distribution of the adaptation energy between the coefficients of the PNLMS and IPNLMS algorithms, using parameter values that lead to the minimal estimation error of each iteration of the adaptation process. Numerical tests performed (considering various scenarios in which the plant impulse response is sparse) show that the proposed methodologies achieve convergence speeds faster than the PNLMS and IPNLMS algorithms, and other algorithms of the PNLMS class, such as the sparseness controlled IPNLMS (SC-IPNLMS) algorithm.
Palavras-chave: Filtragem adaptativa
Algoritmos adaptativos LMS normalizados proporcionais
Métodos de otimização
Razão áurea
Busca tabu
Identificação de plantas esparsas
Adaptive filtering
Proportionate normalized leas-mean-square adaptive algorithms
Optimization methods
Golden section
Tabu search
Sparse plant identification
Área(s) do CNPq: Sistemas de Computação
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: CASTELO BRANCO, César Augusto Santana. Algoritmos adaptativos LMS normalizados proporcionais: proposta de novos algoritmos para identificação de plantas esparsas. 2016. 176 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2016.
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1688
Data de defesa: 12-Dec-2016
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
CesarCasteloBranco.pdfDissertação10,99 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.