Recent Submissions
Existência, unicidade e comportamento assintótico da solução de uma equação hiperbólica abstrata não linear com termo de amortecimento forte
O trabalho aqui apresentado visa provar a existência e unicidade da solução e investigar o comportamento assintótico para um modelo abstrato de uma diferencial hiperbólica equação do tipo Kirchhoff, que descreve as vibrações não lineares de uma corda elástica com forte amortecimento. Isso é, u ′′(t) + M |A1/2u(t)|2 Au(t) + Au′(t) = 0 u(0) = u0, u′ (0) = u1...
Uma Caracterização do Catenoide Crítico
As superfícies mínimas com bordo livre mergulhadas na bola unitária do espaço euclidiano tridimensional são pontos críticos do funcional área entre as superfícies mergulhadas em B3 . O presente trabalho concentra-se nos resultados apresentados no artigo A Characte- rization of the Critical Catenoid por Peter McGrath [14], onde ele caracteriza o catenoide crítico como o único anel mínimo com bordo livre mergulhado na bola unitária em R 3 invariante por reflexões com respeito a três ...
Polinômios ortogonais no círculo unitário associados a um par de sequências reais
Na teoria dos polinômios ortogonais no círculo unitário, um dos principais resultados é o conhecido Teorema de Verblunsky, no qual, para qualquer sequência de números complexos, com módulo menor do que um, sempre é possível relacionar uma medida de probabilidade não trivial no círculo unitário e, consequentemente, obter sua associada sequência de polinômios ortogonais (e vice-versa). Com base nesse resultado, e na teoria das sequência encadeadas positivas, foi mostrado que é possível obter um...
Equação ao de Kirchhoff fracamente dissipativa: existência, unicidade e decaimento exponencial
Neste trabalho provaremos a existência e unicidade da solução forte do problema de Cauchy em L2(Ω) cuja equação diferencial parcial e modelada por d2u/dt2(x, t) − M(∥∇u(x, t)∥2)∆u(x, t) + δdu/dt (x, t) = 0 u(x, t) = 0 em Γ × [0, T[ u(x, 0) = u0(x) em Ω du/dt (x, 0) = u1(x) em Ω
Acessibilidade e Estabilidade Ergódica
Esta dissertação tem como principal objetivo estudar a propriedade de acessibilidade estável de um C r−difeomorfismo parcialmente hiperbólico. Estudaremos como essa propriedade implica em ergodicidade e mais, estabilidade ergódica. Veremos que existe um conjunto C 1 aberto e denso de difeomorfismos acessíveis no espaço dos C r−difeomorfismos parcialmente hiperbólicos com r ≥ 1. Na parte final do capitulo 2 veremos que o mesmo resultado vale para difeomorfismos parcialmente hiperbólicos simplé...
Aplicação do modelo Black-Sholes e Binomial para precificação de opções europeias
Neste trabalho, iremos estudar a precificação de uma opção de compra do tipo europeia, mostrar os fatores que interferem positivamente e negativamente no preço de uma opção e usaremos os modelos matemáticos de Black-Sholes e o Binomial para precificação de opção ao de compra do tipo europeia. Apresentaremos também uma aplicação dos modelos estudados para precificação de opções de Petróleo Brasileiro S.A - PETROBRAS.
Uma caracterização de potenciais hiperbolicos para mapas racionais
Neste trabalho estudamos propriedades de potenciais hiperb´olicos. Consideramos mapas f : X → X de grau n ≥ 2 com X sendo espa¸co m´etrico compacto. Caracterizamos os potenciais H¨older cont´ınuos ϕ que possuem a seguinte propriedade sup ϕ < P(f, ϕ).
Hipersuperfícies Capilares Estáveis em um Semiespaço ou em um Slab
Este trabalho apresenta e analisa os resultados obtidos por Abdelhamid Ainouz e Rabah Souam [1]. Eles obtiveram três resultados para hipersuperfícies imersas em domínios como slab e semiespaço do espaço Euclidiano. O resultado geral é que hipersuperfícies capilares estáveis imersas em um slab ou um semiespaço fechados em Rn+1 apresentam simetria rotacional. Mais precisamente, com as hipóteses de capilaridade e estabilidade, eles demonstraram que quando a superfície tem gênero zero e está...
O Método de Sub e Super Soluções e Aplicações.
Neste trabalho, apresentamos dois métodos envolvendo sub e supersolução. Um deles, no sentido fraco, que será usado para estudar a existência de solução fraca de uma classe de problemas elípticos de segunda ordem e que se anula na fronteira. O outro método, no sentido clássico, será usado para estudar a existência de solução em C2(); de uma classe, de problemas elípticos do tipo côncavo convexo.
Superfícies estáveis com curvatura média constante e bordo circular.
O modelo matemático de uma bolha de sabão que tem seu bordo em um aro circular é uma superfície cmc com bordo circular. A superfície se forma de maneira a minimizar a área, com volume fixo e bordo fixo. Concentramo-nos no artigo Stable Constant Mean Curvature Surfaces with Circular Boundary, por Luis J. Alías, Rafael López e Bennett Palmer [3] e mostramos que, no caso de gênero zero, as únicas superfícies estáveis cmc com bordo circular são as calotas esféricas e os discos planos. Também...
Perspectivas em derivadas de ordem superior de funções quaterniônicas
A dissertação consiste essencialmente do estudo dos quatérnios, visando generalizar resultados da Análise Complexa Clássica, além de fundamentar bases teóricas para futuras aplicações à Matemática e à Física. Para isso, mostramos a estrutura dos quatérnios e suas propriedades, definimos as principais funções quaterniônicas, apresentamos relações do tipo Cauchy-Riemann, demonstramos derivadas quaterniônicas para uma classe de funções, determinamos resultados a respeito da derivação de ord...
Os três níveis da solução de problemas
Este trabalho tem como objetivo apresentar a resolução de problemas a partir da atuação do resolvedor em três níveis denominados estratégias, táticas e ferramentas diferenciando cada um desses por meio de conceitos e exemplos clássicos. Nesse contexto, as estratégias são elementos que norteiam o primeiro contato com o problema bem como sua abordagem de forma geral. Enquanto que as táticas, são resultados matemáticos aplicados na superação de obstáculos que se apresentam durante a resoluç...
EXISTENCIA DE SOLUÇÃO PARA PROBLEMAS ENVOLVENDO O OPERADOR p-LAPLACIANO.
Neste trabalho, estabelecemos a existência de solução para uma classe de problemas envolvendo o operador p-laplaciano. Para isso, usamos resultados clássicos de Análise Funcional e Equações Diferenciais Parciais, a fim de aplicar o consagrado Teorema do Passo da Montanha.
Unicidade de hipersuperfícies capilares estáveis em uma bola
Neste trabalho estudaremos o resultado obtido por Guofang Wang e Chao Xia [14] que afirma que qualquer hipersuperfície capilar estável imersa em uma bola de uma forma espacial é totalmente umbílica. A construção de uma nova fórmula do tipo Minkowski foi uma das principais ferramentas usadas na solução do problema. A abordagem da prova também funciona para hipersuperfícies fechadas, ou seja, o trabalho fornece uma nova prova dos resultados de unicidade de Barbosa-do Carmo [4] e Barbosa-do Carm...
Controlabilidade nula e aproximada para uma equação parabólica não linear
A teoria de controle matemático é uma área da matemática aplicada que se ocupa da análise de sistemas de controle de Equações Diferenciais Parciais (EDPs) ou de Equações Diferenciais Ordinárias (EDOs). Essa teoria teve um grande desenvolvimento com os trabalhos de Russel, J. L. Lions, O.Yu. Imanuvilov, A. V. Fursikov, E. Zuazua, dentre outros. Controlar um sistema significa infuenciar seu comportamento de modo a alcançar o objetivo desejado. Neste trabalho estudaremos a controlabilidade nula ...
Análise quaterniônica: teoremas e perspectivas em derivação e integração
O estudo dos quatérnios tem sido desenvolvido nas últimas décadas e resultados que permitem generalizações a partir daqueles conhecidos da Análise Complexa Clássica puderam ser verificados para esta teoria. Assim, o escopo do presente trabalho é o de apresentá-los além de mostrar outros decorrentes dos anteriores, cabe citar: novos teoremas de derivação e integração quaterniônica.
Medidas SRB para Atratores Hiperbólicos
Este trabalho inicia-se com a definição de medida SRB, e a apresentação de diversos conceitos da teoria ergódica importantes para o desenvolvimento dos resultados apresentados. É demonstrada a existência e unicidade de medidas SRB para transformações expansoras em variedades compactas e conexas cujo jacobiano é Holder. Em seguida, apresenta-se a definição de conjuntos hiperbólicos, atratores hiperbólicos e suas respectivas propriedades fundamentais. Como resultado principal, é demonstrada ...
Estabilidade assintótica para um modelo dissipativo de equação de placas com p - Laplaciano e termo memória
No presente trabalho, estudaremos situações relacionadas a existência, unicidade, taxas de decaimento e comportamentos assintóticos de soluções para uma classe de equações de placas não linear e com termo de memória. Em particular, no primeiro capítulo revisamos alguns assuntos relacionados a uma série de resultados oriundos da teoria geral da análise funcional, os quais ser˜ao aplicados no decorrer dessa dissertação. No capítulo seguinte, abordaremos uma equação da placa de quarta ordem...
Tópicos de Dinâmica Hiperbólica
O objetivo deste trabalho é dissertar sobre alguns tópicos dos sistemas dinâmicos hiberbólicos. Nós coletamos resultados e definicões que em sua maioria encontram-se dispersos, ou ainda, em obras de contexto generalizado. Assim, nos propomos a fazer uma caminhada que começa com a definicão de órbita, passa por resultados clássicos como o Teorema de Hartman-Grobman e o Lema de Sombreamento, e termina com o teorema da Omega estabilidade.
Rigidez de planos projetivos minimizantes de área em 3-Variedades
Neste trabalho, dissertamos sobre o artigo "Area-minimizing Projective Planes in 3-Manifolds" devido a Hubert Bray, Simon Brendle, Michael Eichmair e André Neves. Neste artigo eles consideram uma 3-variedades Riemannianas compactas (M³, g) com curvatura escalar positiva e que admitem planos projetivos mergulhados. Nestas condições eles provam uma estimativa superior, em termo do ínfimo da curvatura escalar de (M; g), para a área do plano projetivo que possui a menor área dentro da classe de t...
- 23 UFMA
- 23 Dissertação