@MASTERSTHESIS{ 2020:1398032771, title = {Segmentação Automática de Vértebras em 3D e Diagnóstico de Fraturas em Imagens de Ressonância Magnética Utilizando Dense U-Net e XGBoost}, year = {2020}, url = "https://tedebc.ufma.br/jspui/handle/tede/5919", abstract = "A dor lombar é uma razão comum para visitas clínicas e o exame de ressonância magnética é frequentemente utilizado em sistemas de apoio a diagnóstico de patologias na coluna. Visando aprimorar e automatizar esse processo, este estudo propõe o uso de técnicas computacionais para a segmentação de vértebras em imagens de ressonância magnética, com o objetivo de realizar posteriores análises acerca de patologias na coluna. Para este fim, são utilizadas arquiteturas de Deep Learning e Aprendizado de Máquina: a Dense U-Net para a segmentação em 3D e CNN com XGBoost para a classificação de vértebras que apresentam ruptura ou não. Os resultados obtidos mostram que a Dense U-Net é promissora em localizar a região da vértebra, obtendo um valor de Coeficiente de Dice médio de 90,82%, superando, assim vários trabalhos importantes focados no problema. A classificação também se mostrou eficiente, apresentando como melhores resultados valores de 96,88% para acurácia e 88,89% de sensibilidade.", publisher = {Universidade Federal do Maranhão}, scholl = {PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET}, note = {DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET} }