@MASTERSTHESIS{ 2016:783838067, title = {Alocação de Medidores para a Estimação de Estado em Redes Elétricas Inteligentes}, year = {2016}, url = "http://tedebc.ufma.br:8080/jspui/handle/tede/299", abstract = "Para planejar e operar adequadamente uma Rede Elétrica Inteligente (REI), muitas novas considerações técnicas, no âmbito de sistemas de distribuição, devem ser apreciadas, por exemplo: a estabilidade devido a instalação de Geração Distribuída (GD), o despacho de carga e geração, o gerenciamento de dispositivos de armazenamento de energia e a avaliação do impacto da conexão de veículos elétricos na rede de distribuição. O principal pré-requisito para muitas destas novas funções do centro de controle do sistema de distribuição é a determinação do estado da rede elétrica (módulo e a fase das tensões nodais) em tempo real a partir de dispositivos de medição nela instalados. Em centros de controle de sistemas de transmissão esta tarefa é realizada por ferramentas de estimação de estado. Desta forma, a Estimação de Estado em Redes de Distribuição (EERD) é um dos alicerces para a implantação de uma REI. A presença de um número reduzido de medições pode tornar a rede elétrica não observável no âmbito da EERD. Isto é, as variáveis de estado (módulo e fase das tensões nodais em todas as barras) não podem ser determinadas a partir de um conjunto de medições por um estimador de estado. Devido a isto, geralmente adiciona-se um grande número de pseudo-medições ao plano de medição existente para assegurar a observabilidade e viabilizar a EERD. Um problema com esta estratégia é que a precisão do estado estimado é comprometida devido ao fato de que os erros associados com as pseudo-medições são consideravelmente maiores do que aqueles referentes às medições reais. Consequentemente é necessário alocar medidores (magnitude das tensões, fluxos de potência ativa e reativa, magnitude das correntes, etc.) para garantir a precisão do EERD. O problema de alocação de medidores para a estimação de estado em redes de transmissão é, geralmente, realizado com o objetivo de assegurar a observabilidade. Por outro lado, a alocação de medidores para EERD é realizada visando minimizar índices probabilísticos associados com os erros entre os vetores de estado estimado e verdadeiro. Um componente importante do método usado para resolver o problema de alocação de medidores é a técnica probabilística usada para estimar a função objetivo. Devido à natureza não-linear do problema de EERD, a melhor opção tem sido utilizar a Simulação Monte Carlo (SMC). Uma desvantagem da SMC para estimar a função objetivo do problema de alocação é o seu alto custo computacional devido a necessidade de resolver um problema de estimação de estado não-linear para cada vii elemento da amostra. O principal objetivo desta dissertação é propor técnicas probabilísticas para melhorar o desempenho computacional de metodologias existentes para alocação de medidores sem sacrificar a precisão do estado estimado. Este compromisso foi estabelecido usando-se duas estratégias. Na primeira, um modelo linearizado é usado para estimar o estado e a SMC para determinar os riscos da função objetivo. Na segunda, uma fórmula analítica fechada é usada para determinar os riscos com base no modelo linearizado. Além disso, as versões melhoradas dos algoritmos de alocação propostos nesta dissertação consideram o efeito da correlação entre as medições. As metodologias de alocação propostas foram testadas no sistema de distribuição britânico de 95 barras. Os resultados dos testes demonstraram que a introdução das estratégias propostas em um algoritmo de alocação de medidores reduziu significativamente o seu custo computacional. Além disso, pode-se observar que ocorreram melhorias na precisão em alguns casos, pois as estimativas dos riscos fornecidas pela SMC não são precisas com pequenas amostras.", publisher = {Universidade Federal do Maranhão}, scholl = {PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET}, note = {Engenharia} }