@MASTERSTHESIS{ 2019:452735015, title = {Modelos de predição aplicados ao aprendizado motor}, year = {2019}, url = "https://tedebc.ufma.br/jspui/handle/tede/tede/2571", abstract = "O presente trabalho tem como objetivo propor uma abordagem para estimar a quantidade de sessões necessárias para aprender uma tarefa motora. As atividades motoras são a principal forma de interagir com o mundo que nos rodeia. Portanto, a perda da capacidade de realizar algumas dessas atividades, como resultado de uma doença neurológica, é um dano grave ao indivíduo. Na literatura, há muitos trabalhos sobre aprendizado motor, em sua maioria buscando formas de diminuir o tempo de aquisição de habilidade ou reabilitação motora. Entretanto, poucos trabalhos concentram-se em tentar estimar o tempo de treinamento necessário para adquirir determinado desempenho motor. Desta forma, a metodologia empregada nesta pesquisa consistiu na revisão de literatura de aquisição de habilidade motora, bem como na montagem da configuração inicial de uma plataforma de treinamento, aplicação de um experimento piloto com três participantes e um experimento final com oito participantes. No experimento piloto, uma sessão de treinamento de três blocos para cada participante foi realizada e objetivou-se predizer em qual bloco o participante encontrava-se. A partir de três participantes reais, 18 participantes simulados foram gerados, visando a aferir o desempenho do experimento com mais participantes, sendo que se estimou o bloco através do desempenho médio dos participantes. No experimento final, foram realizadas três sessões para cada participante, cujo objetivo era predizer em qual sessão o participante alcançaria determinado erro com base no seu perfil e no seu desempenho inicial. Os modelos de classificação utilizados no experimento final foram: Algoritmo K-Vizinhos mais Próximos, Rede Neural MLP, Árvore de Decisão, Máquina de Suporte Vetorial e Aprendizagem de Máquina Automática (AutoML) com "AutoWeka". Nos resultados do experimento piloto, percebeu-se um aperfeiçoamento motor dos participantes após o treino. Através dos dados do experimento piloto, obtiveram-se os melhores resultados utilizando o algoritmo Árvore de Decisão. Nos resultados do experimento final, foi possível observar o aperfeiçoamento e a consistência motora. Utilizando os dados do experimento final, obtiveram-se os melhores resultados com o AutoML. Assim sendo, o trabalho mostrou a possibilidade de estimação da quantidade de sessões para atingir determinada desempenho utilizando algoritmos de predição. Adicionalmente, ressalta-se a relevância do trabalho, uma vez que este servirá de base para experimentos futuros com mais participantes saudáveis, assim como pessoas com dano motor.", publisher = {Universidade Federal do Maranhão}, scholl = {PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET}, note = {DEPARTAMENTO DE INFORMÁTICA/CCET} }