@MASTERSTHESIS{ 2012:457190219, title = {DESENVOLVIMENTO DE UM SISTEMA BASEADO EM REDUNDÂNCIA ANALÍTICA E REDES NEURONAIS ARTIFICIAIS PARA RECUPERAÇÃO DE FALHAS NA INSTRUMENTAÇÃO DE SUBESTAÇÕES DE ENERGIA ELÉTRICA.}, year = {2012}, url = "http://tedebc.ufma.br:8080/jspui/handle/tede/1865", abstract = "Este trabalho tem como objetivo monitorar e analisar os dados provenientes do sistema de instrumentação de uma subestação como forma de identificar falsos alarmes, que pode acarretar em uma tomada de decisão equivocada por parte da manutenção e operação. Este projeto foi concebido devido à necessidade de um projeto de pesquisa e desenvolvimento que se intitula Centro de Gestão da Manutenção (CGM) cujo objetivo global é auxiliar a manutenção na intervenção operacional de seus equipamentos. Os dados são extraídos do sistema de automação provenientes dos reles digitais que tem função de proteção e medição da rede elétrica, passando por um sequencia de transformação dos dados até chegar aos resultados, que servirá para detecção e diagnostico de falhas. Foram aplicados métodos baseados no modelo quantitativo através da transformação dos dados do sistema de variáveis contínuas (SVC) e qualitativo através da transformação dos dados do sistema de eventos discretos (SED) aplicando técnicas de redundância analítica e redes neurais respectivamente, objetivando assim um modelo simplificado para detecção e diagnóstico da falha (DDF). O modelo foi concebido levando em consideração as características DDF decorrente de suas etapas, propiciando assim um bom sistema de recuperação de falha. Saber filtrar se determinado evento é real ou um falso alarme não é uma tarefa fácil, porém este sistema terá que atender este propósito. Foram utilizados recursos tecnológicos bastante consolidados no processo industrial para garantir a integração da solução, pois o fator tempo e o processamento da informação são decisivos nos resultados gerados pelo sistema de recuperação. Outro ponto fundamental neste trabalho foi ter desenvolvido um sistema baseado no conhecimento experimental, pois se tem maior robustez nos resultados.", publisher = {Universidade Federal do Maranhão}, scholl = {PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET}, note = {DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET} }