???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tedebc.ufma.br/jspui/handle/tede/tede/1293
Tipo do documento: Dissertação
Título: Classificação de Fibrilação Atrial utilizando Curtose
Título(s) alternativo(s): Classification of Atrial Fibrillation using Curtosis
Autor: OLIVEIRA jÚNIOR, Alfredo Costa 
Primeiro orientador: BARROS FILHO, Allan Kardec Duailibe
Resumo: A Fibrilação atrial (FA) é uma das arritmias cardíacas mais comuns em todo o mundo. Por isso, amplos são os esforços para implementar sistemas que apoiem o diagnóstico de FA. A principal forma não invasiva de avaliar a saúde cardíaca, é através da análise do sinal de eletrocardiograma (ECG), o qual representa a atividade elétrica do músculo cardíaco, e possui marcações temporais características: as ondas P, Q, R, S e T. Alguns autores utilizaram técnicas de filtragem, análise estatística e até redes neurais para detectar FA com base no intervalo RR, que é dado pela diferença temporal entre os picos da onda R. Entretanto, a análise do intervalo RR permite avaliar apenas as variações que ocorrem na onda R do sinal de ECG, não permitindo avaliar, por exemplo, as alterações na onda P, provocadas pela FA. Diante disso, propõe-se caracterizar a amplitude do sinal de ECG, a fim de classificar pacientes com FA e saudáveis. Na metodologia proposta, o sinal de ECG, foi analisado por meio das seguintes estatísticas: variância, assimetria e curtose. Para avaliar o classificador proposto, usou-se sinais obtidos das bases de dados MIT-BIH Atrial Fibrillation e MIT-BIH Normal Sinus Rhythm referentes aos pacientes com FA e com ritmo cardíaco normal, respectivamente. Dentre as estatísticas analidadas, a curtose foi a que apresentou resultados superiores em termos de sensibilidade (Se = 100%), especificidade (Sp = 88, 33%) e acurácia (Ac = 91, 33%). Esses resultados são de se esperar pelo fato de que a curtose é uma medida de não-gaussianidade e que o sinal de ECG possui distribuição esparsa. A metodologia proposta também requer um número menor de etapas de pré-processamento, e sua simplicidade permite implementações em sistemas embarcados que apoiarão o diagnóstico clínico.
Abstract: Atrial fibrilation(AF) is one of the most common cardiac arrhythmias worldwide. Thus, there are ample efforts to implement AF diagnosis systems. The main noninvasive way to assess cardiac health is through electrocardiogram (ECG) signal analysis, which represents the electrical activity of the cardiac muscle, and has characteristic temporal markings: P, Q, R, S and T waves. Some authors use filtering techniques, statistical analysis and even neural networks for detecting AF based on the RR interval, that is given by the temporal difference between the peaks of the R wave. However, analises of the RR interval allows for evaluating changes occurring only in the R wave of the ECG signal, not allowing to assess, for example, variations in the P wave provoked by the AF. In face of that, we propose characterize the ECG signal amplitude aiming at classifying both healthy and AF patients. The ECG signal was analyzed in the proposed methodology through the following statistics: variance, asymmetry, and kurtosis. Herein, we use the MIT-BIH Atrial Fibrillation and MIT-BIH Normal Sinus Rhythm database signals to evaluate AF and normal heartbeat intervals. Our study shown that kurtosis outperfomed variance and asymmetry with respect to sensibility (Se = 100%), specificity (Sp = 88.33%) and accuracy (Ac = 91.33%). The results were expected since kurtosis is a non-Gaussian measure and the ECG signal has sparse distribution. The proposed methodology also requires a lower number of pre-processing stages, and its simplicity allows for implementations in imbedded systems supporting the clinical diagnosis.
Palavras-chave: Estrutura do sinal de ECG; sinais esparsos;estatística de alta ordem;apoio ao diagnóstico
Structure of the ECG signal;Sparse signals;Statistical high order; Diagnostic support
Área(s) do CNPq: Engenharia Médica
Idioma: por
País: Brasil
Instituição: Universidade Federal do Maranhão
Sigla da instituição: UFMA
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Citação: OLIVEIRA jÚNIOR, Alfredo Costa. Classificação de Fibrilação Atrial utilizando Curtose. 2017. [57 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] .
Tipo de acesso: Acesso Aberto
URI: http://tedebc.ufma.br:8080/jspui/handle/tede/1293
Data de defesa: 16-Feb-2017
Appears in Collections:DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

Files in This Item:
File Description SizeFormat 
Alfredo Costa Oliveira Júnior.pdfDissertação de Mestrado770,94 kBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.