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RESUMO

Esta dissertação tem por objetivo revisar aspectos da gravitação de Einstein, focando nas téc-
nicas de cálculo do propagador de Feynman do gráviton na teoria de Einstein-Hilbert e em
modelos gravitacionais modi�cados. Para esse �m, apresentamos e usamos o formalismo de
projetores tensoriais, adequados para a realidade do campo gravitacional (campo de spin-2), na
famosa base de Barnes-Rivers. Frisamos que para cada modelo de gravidade considerado existe
um conjunto distinto de operadores que formam uma álgebra fechada, e que o formalismo de
projetores tensoriais só funciona quando consideramos o conjunto adequado para cada cenário
especí�co. Tal formalismo, além de muito elegante, é bastante poderoso por permitir calcular
o propagador do gráviton em teorias gravitacionais diversas. De posse do propagador, obtemos
as relações de dispersão, que permitem acessar informações atinentes a propagação de sinais e
sobre as excitações da teoria. Neste trabalho, revisamos o cálculo do propagador do gráviton
em quatro teorias distintas. A primeira delas é a gravitação de Einstein-Hilbert não-massiva,
onde consideramos a densidade lagrangiana apenas composta pelo escalar de Ricci (R). A se-
gunda consiste numa versão estendida da teoria gravitacional de Einstein-Hilbert, modi�cada
por termos quadráticos, ou seja, além do escalar de Ricci, a lagrangiana desse modelo conta
com termos do tipo R2 e RµνR

µν . A terceira é a gravitação de Einstein-Chern-Simons, que é
uma teoria para gravidade em (2+1) dimensões. Neste modelo, os operadores que constituem a
base de Barnes-Rivers não formam um conjunto fechado, necessitando de uma versão estendida
para a obtenção do propagador. Por �m, abordamos uma teoria de gravitação constituída pelo
acoplamento entre o campo bumblebee (bµ) e a lagrangiana de Einstein-Hilbert. Aqui também
se faz necessária uma extensão da base de Barnes-Rivers, através de projetores que contenham
o campo bumblebee, que é o violador da simetria de Lorentz.

Palavras-chave: Einstein-Hilbert. Teorias gravitacionais. Propagador do gráviton. Barnes-
Rivers. Modelo bumblebee. Violação da simetria de Lorentz.



ABSTRACT

This master thesis has the goal to revise some aspects of the Einstein's gravitation, focused on
techniques of compute the graviton's Feynman propagator in Einstein-Hilbert theory and mo-
di�ed models of gravity. For this purpose, we show the tensorial projectors formalism suitable
for the gravitational �eld case (spin-2 �eld) in the famous Barnes-Rivers basis. We emphasize
that for each gravity model considered exist a distinct set of operators that form a closed alge-
bra, and that the formalism of tensorial projectors only work when we consider the suitable set
for each speci�c case. Such formalism, besides being very elegant, is quite powerful because it
allows calculating the graviton's propagator in di�erent gravitational theories. In possession of
the propagator, we obtain the dispersion relations, which allow access to information related to
the propagation of signals and about the excitations of the theory. In this work, we review the
algorithm to compute the graviton's propagator in four di�erent theories. The �rst of these is
the non-massive Einstein-Hilbert gravitation, where we consider the Lagrangian density only
composed by the Ricci scalar (R). The second one consists of an extended version of the
Einstein-Hilbert gravitational theory, modi�ed by quadratic terms, that is, in addition to the
Ricci scalar, the Lagrangian of this model has terms of the type R2 and RµνR

µν . The third is
the gravitation of Einstein-Chern-Simons, which is a theory for gravity in (2 + 1) dimensions.
In this model, the operators that compose the Barnes-Rivers basis do not form a closed set,
requiring an extended version to obtain the propagator. Finally, we approach a theory of gra-
vitation constituted by the coupling between the bumblebee �eld (bµ) and the Einstein-Hilbert
lagrangian. An extension of the Barnes-Rivers basis is also necessary here, through the projec-
tors that contain the bumblebee �eld, which is the violator of Lorentz's symmetry.

Keywords: Einstein-Hilbert. Gravitational theories. Graviton's propagator. Barnes-
Rivers. Bumblebee model. Lorentz's symmetry violation.
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Introdução

Este trabalho aborda de maneira pormenorizada um procedimento bastante trabalhoso da fí-
sica teórica: o cálculo do propagador de Feynman em teorias gravitacionais, que corresponde ao
propagador do gráviton. Mesmo no cenário mais simples, que condiz à gravitação de Einstein-
Hilbert (E-H), o procedimento exige um trato e habilidade com uma base de projetores es-
pecialmente construídos para a estutura de uma teoria de spin-2. A situação vai se tornando
mais complexa à medida que novos termos vão sendo adicionados à ação de E-H. O fato de o
campo gravitacional ser descrito por uma teoria de spin 2, exigindo ser representado por um
tensor com dois índices, con�gura uma diferença substancial em relação ao cenário do campo
de Maxwell (spin-1). Nessa dissertação, apresentaremos o procedimento de cálculo baseado no
método dos projetores tensoriais, o mesmo usado com sucesso para o cálculo do propagador em
teorias eletromagnéticas. Iniciamos, portanto, revisando o método de cálculo do propagador
do campo eletromagnético dentro da teoria de Maxwell-Carrol-Field-Jackiw. A �m de fami-
liarizar o leitor com o algoritmo a ser empregado no cálculo dos propagadores, apresentamos
uma abordagem inicial considerando a teoria eletromagnética de Maxwell-Carrol-Field-Jackiw.
Por possuir uma lagrangiana não-elementar (para uma teoria de spin-1), dotada de um campo
de fundo que viola a simetria de Lorentz, a teoria de MCFJ torna-se um excelente ponto de
partida para ilustração.

Para tratar o caso gravitacional, apresentamos a base de Barnes-Rivers, cujos operadores
são combinações linearmente independente dos projetores longitudinal e transversal do campo
eletromagnético em (3 + 1) dimensões. Esta base será utilizada para expressar os operadores
bilineares e o operador identidade, assim a álgebra dos projetores longitudinal e transversal nos
permite construir a álgebra dos operadores de Barnes-Rivers. Ao mesmo tempo em que estes
projetores ajudam no cálculo do propagador por um lado, tornam a tarefa mais trabalhosa
por outro. Isso acontece porque alguns dos operadores da base de Barnes-Rivers possuem uma
extensão signi�cativa e, a depender dos operadores envolvidos na contração, surgem diversos
cálculos a serem realizados, o que exige um nível de atenção considerável por parte de quem
lida com a tarefa manualmente.

Na álgebra matricial, é sabido que �o produto de uma matriz por sua inversa é igual a
matriz identidade�. No cálculo do propagador de uma teoria de calibre, pragmaticamente do
ponto de vista operacional, o produto da matriz é trocado por palavra produto por contração
tensorial e matriz por operador bilinear. Isso se deve ao fato de o propagador de Feynman
ser o inverso de um operador tensorial que �quadra� a lagrangiana em questão. Esse operador
inverso pode ser proposto como uma combinação linear dos operadores de Barnes-Rivers. O
procedimento consiste então em determinar os coe�cientes dessa combinação linear e escrever
adequadamente o operador identidade. Em álgebra matricial, a matriz identidade pode ser
representada pelo delta de Kronecker que analogamente representa a métrica de um espaço
euclidiano. Isso permite a concluir que em teorias de spin 1, o operador identidade pode ser
escrito em termos do delta de Kronecker 4-dimensional, podendo ser representado por meio
do tensor métrico. No entanto, em teorias gravitacionais, a métrica não pode assumir o papel
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de operador identidade por possuir um total de índices tensoriais (apenas dois) incompatível
com o propagador para teorias de spin-2 (que possui quatro índices tensoriais). Uma estrutura
em conformidade com essa condição, pode ser obtida pelo produto de tensores métricos que
contenha um total de quatro índices tensoriais livres. Entretanto, não é qualquer con�guração
envolvendo o tensor métrico que cumpre a função de operador identidade. Tal arranjo deve ser
compatível com a propriedade de neutralidade operacional, ou seja, sua aplicação em qualquer
operador é sem efeito.

A presente dissertação se propõe a estudar o cálculo do propagador de Feynman em dife-
rentes teorias gravitacionais. A primeira, e mais simples de todas, é a teoria de gravitação de
Einstein-Hilbert, que corresponde ao modelo de gráviton não-massivo. Iniciamos o cálculo do
propagador do gráviton não-massivo, levando em conta que a lagrangiana deste modelo é a de
Einstein-Hilbert, composta apenas pelo escalar de Ricci. O propagador neste cenário é bem
simples, obtemos apenas um polo que fornce a relação de dispersão de ondas planas, resultado
típico de propagação não-massiva.

O segundo modelo abordado é o da gravitação de E-H modi�cada por termos quadráticos do
tipo R2 e RµνR

µν . Nesta ocasião, o propagador possui polos massivos que surgem dos coe�cien-
tes de acoplamento presentes nos termos quadráticos. Salientamos que um modo massivo não
indica necessariamente violação da causalidade, ou seja, podemos encontrar modos massivos
causais em uma determinada teoria. Infelizmente, não é este o caso da gravitação quadrática,
veri�camos que um dos modos de propagação obtidos possui velocidade superluminal (v > c).

Seguindo com o cálculo do propagador em modelos de gravidade alternativos, como a gra-
vitação de Einstein-Chern-Simons [15]. Embora essa teoria não contemple acoplamentos com
campos de fundo �xos, o propagador obtido é modi�cado pela alteração na estrutra do espaço-
tempo, promovida pela inserção do termo gravitacional de Chern-Simons. Assim como ocorre
na teoria eletromagnética de Chern-Simons, nos deparamos com o surgimento de um termo
proporcional ao símbolo de Levi-Civita, que aponta para a necessidade de extensão da base de
Barnes-Rivers.

Por último, fazemos uma revisão da ref. [22] que consiste na obtenção do propagador do
gráviton em uma teoria de campo com um setor que sofre violação da simetria d Lorentz. Nesse
modelo, levamos em conta que um acoplamento entre o escalar de curvatura e o campo bum-
blebee (Bµ), violador da simetria de Lorentz numa escala de altas energias (escala de Planck),
possua efeitos que possam ser observados em experimentos realizáveis em escalas de baixas
energias . A presença do campo de fundo altera drasticamente a composição dos operadores
que formam uma álgebra fechada, assim a base de Barnes-Rivers precisa ser estendida. A ne-
cessidade de extensão da base de Barnes-Rivers aparece no momento em que a lagrangiana que
carrega os termos de VL é introduzida, pois surgem estruturas novas que envolvem combina-
ções entre os projetores transversal e longitudinal com o campo bumblebee (bµθαβ e bµωαβ). A
extensão da base de Barnes-Rivers para este cenário foi apresentada em [38], a ideia por trás de
sua execução é apresentada a seguir. De�nimos os termos �estranhos� como novos operadores
simetrizados, calculamos as contrações entre estes com o restante da base e observamos se a es-
trutura do resultado pode ou não ser escrita em termos das já previamente estabelecidas. Caso
não seja possível, adicionamos os termos diferentes como novos operadores de spin e repetimos
o processo até não haver mais o surgimento de termos estranhos . Não é objetivo deste trabalho
obter a extensão da base de Barnes-Rivers no cenário de gravitação modi�cada por termos de
violação da simetria de Lorentz. Entretanto, faremos o cálculo do seu propagador, analisando
a sua estrutura de polos e compatibilidade com o princípio da causalidade.
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CAPÍTULO 1
Cálculo do propagador para teorias de
campo de spin 1

O algoritmo que aqui será empregado para o cálculo de propagadores pode parecer bem compli-
cado para iniciantes. Tendo isso em vista, iremos fazer uma breve revisão deste procedimento
em uma teoria de spin 1 por ser mais simples. O modelo que usaremos para apresentar as nuan-
ces do cálculo do propagador será o de Maxwell-Carrol-Field-Jackiw (MFCJ) que é um modelo
que possui um campo de fundo (background) violador da simetria de Lorentz. Os primeiros
estudos feitos sobre este modelo foram realizados por Sean M. Carrol, George B. Field e Roman
Jackiw [1] e o propagador da teoria MCFJ foi obtido por [2]. É necessário deixar bem claro que
a intenção deste capítulo não é esmiuçar a teoria de MCFJ, mas apenas familiarizar o leitor com
o método em um cenário mais elementar que o gravitacional. Dessa forma, não iremos analisar
a estrutura dos polos obtidos a partir do propagador encontrado, daremos enfoque apenas ao
formalismo de projetores tensoriais empregado no cálculo do propagador, bem como a extensão
da base de projetores, algo que será recorrente nos capítulos que se seguem.

1.1 Propagador para a teoria de Maxwell-Carrol-Field-Jackiw

A ação do modelo de MFCJ é dada por

L = −1

4
FαβF

αβ − 1

4
εαβρφVαAβFρφ +

1

2ξ
(∂µA

µ)2, (1.1.1)

onde Aµ é o 4-potencial, V µ = (V0,V) é o 4-vetor �xo de violação da simetria de Lorentz,
εµναβ é o símbolo de Levi-Civita, Fµν é o tensor do campo de Maxwell e a última parcela de
(1.1.1) é o chamado �gauge-�xing�. Aqui o nosso objetivo é reescrever a eq.(1.1.1) em uma
forma conhecida como �quadrática�, o que signi�ca escrevê-la na forma

L = AµDµνA
ν , (1.1.2)

onde Dµν é um operador tensorial. Podemos fazer isso reescrevendo, cada um dos termos que
compõem a lagrangiana (1.1.1):

FαβF
αβ = (∂αAβ − ∂βAα)

(
∂αAβ − ∂βAα

)
= 2∂αAβ∂

αAβ − 2∂αAβ∂
βAα. (1.1.3)
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Vamos usar a derivada total para reescrever cada uma destas parcelas,

∂α
(
Aβ∂

αAβ
)
= ∂αAβ∂

αAβ + Aβ∂α∂
αAβ, (1.1.4)

∂α
(
Aβ∂

βAα
)
= ∂αAβ∂

βAα + Aβ∂α∂
βAα, (1.1.5)

como a derivada total não contribui para as equações de movimento, temos

FαβF
αβ = −2Aαηαβ□Aβ + 2Aβ∂α∂βA

α = −2AαθαβA
β, (1.1.6)

onde

θαβ = ηαβ − ωαβ, ωαβ =
∂α∂β
□

, (1.1.7)

são os projetores transversal e longitudinal respectivamente. Finalmente,

−1

4
FαβF

αβ =
1

2
Aβ□θαβA

α. (1.1.8)

Para a próxima parcela, temos

εαβρφVαAβFρφ = εαβρφVαAβ (∂ρAφ − ∂φAρ) , (1.1.9)

= εαβρφVαAβ∂ρAφ − εαβρφVαAβ∂φAρ. (1.1.10)

Usando as simetrias do Símbolo de Levi-Civita, podemos obter

εαβφρVαAβ∂φAρ = −εαβρφVαAβ∂φAρ − εαβρφVαAβ∂φAρ, (1.1.11)

= −2Aβε
αβρφVα∂φAρ = −2AβS

βρAρ, (1.1.12)

sendo
Sβρ = εαβρφVα∂φ (1.1.13)

Vamos mudar a con�guração dos índices por questão de uniformização com o padrão inicial-
mente escrito na eq. (1.1.8)

−1

4
εαβρφVαAβFρφ =

1

2
AαSαβA

β. (1.1.14)

Por último, tratamos o termo de �gauge-�xing�,

1

2ξ
(∂µA

µ)2 =
1

2ξ
(Aβ∂β∂αA

α) = − 1

2ξ
(Aβ□ωαβA

α). (1.1.15)

A eq.(1.1.13) nos traz um operador tipo Chern-Simons em (3 + 1) dimensões. Ressalta-
mos que além de evidenciar a presença do campo de fundo Vφ, tal operador é antissimétrico.
Substituindo as eqs.(1.1.8), (1.1.14) e (1.1.15) na eq.(1.1.1), resulta:

L =
1

2
AαDαβA

β, (1.1.16)

onde o operador Dαβ, dado por:

Dαβ = □θαβ −
□
ξ
ωαβ + Sαβ, (1.1.17)
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possui uma representação matricial própria. A sua forma inversa D−1
αβ é o núcleo do propagador

que desejamos encontrar:

Dαβ (Dαν)
−1 = δ β

ν , (1.1.18)

Dα
β (Dαν)

−1 = ηνβ. (1.1.19)

Analisando a eq.(1.1.17) podemos inferir, a princípio, uma forma de escrever a inversa de Dαβ.
Esta seria composta por uma combinação linear dos operadores [ωαβ, θαβ, Sαβ], ou seja,

(Dαν)
−1 = a1ωαν + b1θαν + c1Sαν . (1.1.20)

Assim, o operador (Dαβ)
−1 pode ser obtido ao se determinar os coe�cientes a1, b1 e c1. Para

encontrar estes coe�cientes, substituimos (1.1.20) na Eq. (1.1.19):

Dα
βD−1

αν =

(
□θαβ −

□
ξ
ωα

β + Sα
β

)
(a1ωαν + b1θαν + c1Sαν) ,

Dα
βD−1

αν = □θαβ (a1ωαν + b1θαν + c1Sαν)−
□
ξ
ωα

β (a1ωαν + b1θαν + c1Sαν)

+ Sα
β (a1ωαν + b1θαν + c1Sαν) . (1.1.21)

As contrações tensoriais existentes na expressão acima podem ser determinadas conhecendo a
álgebra dos operadores, que apresentamos a seguir:

ωαβω
α

ν =
∂α∂β
□

∂α∂ν
□

= ωνβ. (1.1.22)

θαβω
α
ν = ωαβθ

α
ν = ηαβω

α
ν − ωαβω

α
ν = ωβν − ωβν = 0, (1.1.23)

ωαβS
α
ν = Sαβω

α
ν =

∂α∂β
□

ηνκε
ακρφVρ∂φ = 0, (1.1.24)

por causa da antissimetria do símbolo de Levi-Civita nos índices α e φ. Seguimos:

θαβθ
α
ν = ηαβθ

α
ν − ωαβθ

α
ν = θνβ. (1.1.25)

θαβS
α
ν = Sαβθ

α
ν = Sαβ (δ

α
ν − ωα

ν) = εαβρφV
ρ∂φδαν = Sνβ. (1.1.26)

SαβS
α
ν = ηκνSαβS

ακ = ηκνεαβρφV
ρ∂φεακσλVσ∂λ. (1.1.27)

Para �nalizar, devemos conhecer o resultado

εακσλεαβρφ = δκβ
(
δσρδ

λ
φ − δσφδ

λ
ρ

)
+ δκρ

(
δσφδ

λ
β − δσβδ

λ
φ

)
+ δκφ

(
δσβδ

λ
ρ − δσρδ

λ
β

)
, (1.1.28)

que leva ao desenvolvimento:

εακσλεαβρφVσ∂λV
ρ∂φ = δκβ

(
Vρ∂φV

ρ∂φ − Vσ∂λV
λ∂σ
)

+
(
Vφ∂βV

κ∂φ − Vβ∂λV
κ∂λ
)
+ (Vβ∂ρV

ρ∂κ − Vρ∂βV
ρ∂κ) , (1.1.29)

SαβS
α
ν = ηβν

[
V 2□− (V · ∂)2

]
+ [(V · ∂) ∂βVν − VβVν□] +

(
VβV

ρ∂ρ∂ν − V 2∂β∂ν
)
, (1.1.30)

= (θνβ + ωνβ)
(
V 2□− λ2

)
−□Λνβ + λ (Σνβ + Σβν)− V 2□ωνβ, (1.1.31)

SαβS
α
ν = θνβ

(
V 2□− λ2

)
− λ2ωνβ + λΣ̃νβ −□Λνβ = fνβ, (1.1.32)
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onde de�nimos
Σνβ = Vν∂β, Vσ∂

σ = λ, Σ̃νβ = Σνβ + Σβν , Λνβ = VνVβ. (1.1.33)

O surgimento de termos novos envolvendo as combinações Vµ∂ν e VµVν , indica que necessitamos

introduzir os elementos
[
Σ̃µν e Λµν

]
no conjuntode projetores inicial: [ωαβ, θαβ, Sαβ], uma vez

que a álgebra dos operadores inicialmente proposta não é fechada. Logo, o operador inverso
deve ser proposto numa forma mais ampla, a saber:

D−1
αν = a1ωαν + b1θαν + c1Sαν + d1Σ̃αν + e1Λαν . (1.1.34)

Vamos calcular as novas contrações iniciando com Σ̃µν

Σ̃αβω
α
ν = (Vα∂β + Vβ∂α)ω

α
ν = λωνβ + Σβν , (1.1.35)

Σ̃αβθ
α
ν = Σ̃αβ (δ

α
ν − ωα

ν) = Σ̃νβ − λωνβ − Σβν , (1.1.36)

Σ̃αβS
α
ν = Σ̃αβηνκS

αν = ηνκ (Vα∂β + Vβ∂α) ε
ανκλVκ∂λ = 0, (1.1.37)

Λαβω
α
ν =

λ

□
Σβν , (1.1.38)

Λαβθ
α
ν = Λαβ (δ

α
ν − ωα

ν) = Λνβ −
λ

□
Σβν , (1.1.39)

ΛαβS
α
ν = ΛαβηνκS

αν = VαVβε
ανκλVκ∂λ = 0, (1.1.40)

Σ̃αβΛ
α
ν = (Vα∂β + Vβ∂α)V

αVν = V 2Σνβ + λΛνβ, (1.1.41)

Σ̃αβΣ̃
α
ν = (Vα∂β + Vβ∂α) (V

α∂ν + Vν∂
α) = □V 2ωνβ + λΣ̃νβ +□Λνβ, (1.1.42)

ΛαβΛ
α
ν = V 2Λνβ. (1.1.43)

Podemos organizar esses resultados na tabela a seguir.

ωα
ν θαν Sα

ν Σ̃α
ν Λα

ν

ωαβ ωνβ 0 0 λωνβ + Σνβ
λ
□Σνβ

θαβ 0 θνβ Sνβ Σ̃νβ − λωνβ − Σνβ Λνβ − λ
□Σνβ

Sαβ 0 Sνβ fνβ 0 0
Σ̃αβ λωνβ + Σβν Σ̃νβ − λωνβ − Σβν 0 □V 2ωνβ + λΣ̃νβ +□Λνβ V 2Σνβ + λΛνβ

Λαβ
λ
□Σβν Λνβ − λ

□Σβν 0 V 2Σβν + λΛνβ V 2Λνβ

Note que todas as contrações calculadas enquadram-se no conjunto já proposto: [ωαβ, θαβ,
Sαβ, Σ̃αβ e Λαβ]. Se no processo de obtenção das contrações deste conjunto surgisse uma outra
estrutura diferente das inicialmente supostas, seria necessário introduzir este novo elemento no
conjunto e repetir a tarefa de calcular as contrações (até que nada novo surgisse).

A álgebra fechada obtida em [2] contém um total de 6 operadores, conseguimos fechá-la com
apenas 5, o que se deve ao fato de considerarmos o projetor Σ̃αβ, que congrega dois projetores
de [2]: Σαβ e Σβα. A vantagem é que o projetor Σ̃αβ é simétrico, enquanto Σαβ e Σβα não
possuem simetria de�nida. Assim, obtemos

Dα
βD−1

αν = ηνβ =

(
□θαβ −

□
ξ
ωα

β + Sα
β

)(
a1ωαν + b1θαν + c1Sαν + d1Σ̃αν + e1Λαν

)
,

(1.1.44)
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Dα
βD−1

αν = □θαβ

(
a1ωαν + b1θαν + c1Sαν + d1Σ̃αν + e1Λαν

)
− □

ξ
ωα

β

(
a1ωαν + b1θαν + c1Sαν + d1Σ̃αν + e1Λαν

)
+ Sα

β

(
a1ωαν + b1θαν + c1Sαν + d1Σ̃αν + e1Λαν

)
, (1.1.45)

Dα
βD−1

αν = b1□θνβ + c1□Sνβ + d1□
(
Σ̃νβ − λωνβ − Σνβ

)
+ e1 (□Λνβ − λΣνβ)

− 1

ξ
[a1□ωνβ + d1□ (λωνβ + Σνβ) + e1λΣνβ]

+ b1Sνβ + c1

[
θνβ
(
V 2□− λ2

)
− λ2ωνβ + λΣ̃νβ −□Λνβ

]
. (1.1.46)

Agrupando os termos semelhantes,

Dα
βD−1

αν =
[
b1□+ c1

(
V 2□− λ2

)]
θνβ

+

[
−d1□λ− 1

ξ
a1□− c1λ

2 − 1

ξ
d1□λ

]
ωνβ + [b1 + c1□]Sνβ

+

[
c1λ− 1

ξ
d1□− 1

ξ
e1λ− e1λ

]
Σνβ + [d1□+ c1λ] Σβν + [e1□− c1□] Λνβ. (1.1.47)

Substituindo o resultado (1.1.47) na eq. (1.1.19) e, usando a relação,

ηνβ = θνβ + ωνβ, (1.1.48)

podemos coletar os termos semelhantes nos projetores θνβ, ωνβ, Sνβ, Σνβ, Σβν e Λνβ, comparando-
os com a eq. (1.1.48), de modo que escrevemos o sistema

b1□+ c1
(
V 2□− λ2

)
= 1, (1.1.49)

d1□λ+
1

ξ
a1□+ c1λ

2 +
1

ξ
d1□λ = −1, (1.1.50)

b1 + c1□ = 0, (1.1.51)

c1λ− 1

ξ
d1□− 1

ξ
e1λ− e1λ = 0, (1.1.52)

d1□+ c1λ = 0, (1.1.53)

e1□− c1□ = 0. (1.1.54)

A solução deste sistema é

a1 = − ξ

□
− λ2

□ (□2 −□V 2 + λ2)
, b1 =

□
□2 −□V 2 + λ2

, (1.1.55)

c1 = − 1

□2 −□V 2 + λ2
, d1 =

λ

□ (□2 −□V 2 + λ2)
, (1.1.56)

e1 = − 1

□2 −□V 2 + λ2
. (1.1.57)

De posse desses resultados, o operador (Dαβ)
−1 assume a forma:

(Dαβ)
−1 = −

[
ξ

□
+

λ2

□ (□2 −□V 2 + λ2)

]
ωαβ +

[
□

□2 −□V 2 + λ2

]
θαν

− Sαβ

□2 −□V 2 + λ2
+

λ

□ (□2 −□V 2 + λ2)
Σ̃αβ −

Λαβ

□2 −□V 2 + λ2
, (1.1.58)
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ou de forma simpli�cada

(Dαβ)
−1 =

1

□ (□2 −□V 2 + λ2)

{
□2θαν −

[
ξ
(
□2 −□V 2 + λ2

)
+ λ2

]
ωαβ −□ (Sαβ + Λαβ) + λΣ̃αβ

}
.

(1.1.59)
Escrevemos então o propagador de Feynman da teoria de Maxwell-Carrol-Field-Jackiw no es-
paço dos momentos △αβ = i (Dαβ)

−1:

△αβ = − i

p2
(
p4 + p2V 2 − (V · p)2

) {p4θαν − [ξ (p4 + p2V 2 − (V · p)2
)
+ λ2

]
ωαβ

+ p2 [Sαβ (p) + Λαβ]− (V · p) Σ̃αβ (p)
}
, (1.1.60)

onde
Sαβ (p) = −iεαβφρVφpρ, Σ̃αβ (p) = Vαpβ + Vβpα. (1.1.61)

Os polos do propagador são

p2 = 0, (1.1.62)

p4 + p2V 2 − (V · p)2 = 0. (1.1.63)
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CAPÍTULO 2
Propagador para teorias gravitacionais

Há um grande interesse físico no propagador de uma teoria, em razão das informações que
podem ser extraídas do mesmo, a exemplo das relações de dispersão que descrevem como a
energia de um campo depende do momento linear. A causalidade também é um outro aspecto
que pode ser obtido a partir das relações de dispersão presentes no propagador. Na verdade, a
causalidade pode ser investigada e examinada a partir das relações de dispersão extraídas do
propagador, sendo uma propriedade importante para estabelecer a consistência de uma teoria
de campos no que tange à propagação de sinais (transmissão de informação), em atendimento
ao Princípio da Causalidade.

O cálculo do propagador requer a utilização de uma base de projetores. Para teorias eletro-
magnéticas, de spin-1, os chamados projetores transversal (θµν) e longitudinal (ωµν) compõem
essa base, cuja denominação se origina da forma como atuam no momento pµ, como veremos
na tabela 2.1. Apesar de ser útil para o campo eletromagnético, esta base de projetores não
é adequada para o campo gravitacional, que possui spin-2. No caso eletromagnético, o spin
do campo em questão (fóton) é 1, e a forma bilinear da lagrangiana será compatível com pro-
jetores de dois índices; no cenário gravitacional, a lagrangiana do campo de spin-2 conduz a
uma forma bilinear com 4 índices tensoriais. A base de projetores adequada neste caso é a
de Barnes-Rivers [3] e [4]: composta por um conjunto de combinações lineares dos projetores
transversal e longitudinal linearmente independentes entre si, todos constituídos por estruturas
de quatro índices tensoriais.

2.1 A teoria do campo gravitacional

A teoria da relatividade geral de Einstein (TRG) [5] possui um dos legados mais bem sucedidos
na história da Física. Enquanto a teoria da relatividade restrita (TRR) surgiu na tentativa
de compatibilizar resultados experimentais de Michelson-Morley [6], a TRG teve origem em
tentativas de conciliar a TRR com a teoria de gravitação de Newton. Tentar conciliar essas
duas teorias esbarrava em um problema: associar a estrutura geométrica do espaço-tempo com
a gravidade [7]. A TRR é uma teoria baseada no conceito de espaço-tempo de Minkowski:
uma estrutura de quatro (3 + 1) dimensões (três espaciais e um temporal), na qual espaço e
tempo passam a ser interpendentes. A quarta dimensão, o tempo, possui natureza distinta das
demais e isso se traduz no sinal negativo que surge quando escrevemos o elemento de distância
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no espaço de Minkowski [8],

ds2 = ηµνdx
µdxν = −c2dt2 + dx2 + dy2 + dz2, (2.1.1)

onde ηµν é a métrica de Minkowski com assinatura (−,+,+,+), dxµ é um elemento in�nitesimal
de de variação do vetor posição e c a velocidade da luz no vácuo.

Podemos notar que a contrução da TRR foi realizada por meio de dois postulados funda-
mentais e possui consequências geométricas como a relatividade da simultaneidade, dilatação
temporal e contração espacial, enquanto que a gravitação newtoniana foi formulada em um
cenário de forças de atração. O campo g⃗ seria a origem dessa força

g⃗ =
GM

r2
r̂, (2.1.2)

gerado por um objeto com massa M , G a constante de gravitação universal e r a distância
entre os corpos que interagem. Este campo tem origem no seguinte potencial

ϕ (r) = −GM

r
, (2.1.3)

que é a quantidade básica na gravitação de Newton. Aqui é importante mencionar que os
cenários sob a ação da gravitação não podem ser descritos pela TRR, uma vez que os corpos
sujeitos à interação gravitacional estão acelerados e não se enquadram como referenciais inerciais
ademais, a gravitação newtoniana não explica a origem do campo gravitacional. Ao apenas
descrever como os corpos interagem e não explicar a origem da interação, a gravitação de
Newton deixa a desejar em sua base conceitual. Nesse sentido, a princípio, uma conexão entre
a TRR e a gravitação deve conter duas principais características: ressigni�cação do conceito de
campo gravitacional, explicando a origem do campo gravitacional e o estabelecimento de um
novo princípio de relatividade, que abrangesse os referenciais não inerciais.

2.1.1 Princípio de equivalência

Na TRG, a geometria do espaço-tempo de�ne a dinâmica do campo que rege e transmite a
interação gravitacional. Esta geometria é representada pelo tensor métrico (gµν), que é quem
assume a função de descrever a gravidade como campo propagante de caráter universal, ou seja,
tudo que existe interage por meio da gravidade.

O estabelecimento de sistemas de referência é a primeira tarefa a ser realizada quando
se deseja medir alguma grandeza física. A própria TRR surge da necessidade de relacionar
as medidas feitas por observadores localizados em sistemas distintos sem discrepância, pois
diferentes observadores devem obter os mesmos resultados para experimentos do mesmo tipo.
O primeiro postulado da relatividade de Einstein sintetiza o caráter imutável das leis físicas
frente à mudança de referencial inercial.

De modo análogo, o princípio de equivalência advém de uma profunda re�exão acerca da
igualdade entre massa inercial e massa gravitacional [5], este princípio a�rma que experimentos
em um laboratório em queda livre fornecem resultados que são indistinguíveis dos mesmos
experimentos realizados em um referencial inercial no espaço vazio. A massa inercial ter o
mesmo valor que a massa gravitacional era uma ideia já considerada por Newton, isso reforça
ainda mais a base conceitual para o estabelecimento do princípio de equivalência que surge da
problemática na de�nição de referencial inercial em um cenário de interação que tudo afeta.
A origem desse pensamento começou por volta de 1907 quando o Einstein questionou a si
mesmo a respeito de como a gravitação de Newton deveria ser ajustada para ser compatível
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com a relatividade restrita. Neste momento teve o que ele próprio chamou de �pensamento mais
feliz da minha vida� ao imaginar que uma pessoa em queda livre não sentiria o próprio peso.
Portanto, a igualdade entre as massas inercial e gravitacional não pode ser mera coincidência
e que esta deveria levar a uma ampla compreensão da inércia e da gravitação.

Dentro da gravitação newtoniana, ter massa é um requisito para que um objeto perceba
fenômenos gravitacionais, a luz, assim, não se enquadraria. No entanto a natureza se mani-
festa de forma distinta ao ideal newtoniano e a luz interage com campos gravitacionais. Essa
interação não ocorre porque a luz possua massa, mas o espaço-tempo que foi deformado pela
presença de um corpo massivo. Imagine uma folha de caderno com pautas sobre uma mesa, as
linhas presentes nessa folha representam a trajetória de um feixe de luz se propagando numa
região do espaço-tempo su�cientemente distante de qualquer objeto capaz de produzir campo
gravitacional. Agora, se apenas segurarmos a folha pelos lados, sem esticar, e a levantarmos,
vamos observar a formação de uma pequena depressão no meio da folha, e as linhas que antes
eram retas foram curvadas pelo peso da folha de papel. As linhas ainda representam o caminho
do feixe de luz, mas este deixou de seguir em linha reta e sofreu um desvio. Este é um dos
pontos mais delicados na TRG, pois ao considerarmos que um feixe de luz sofre um desvio na
sua trajetória quando observada por um referencial acelerado, tendo em vista o princípio de
equivalência, encontramos uma abertura para a veri�cação experimental da TRG. Isso quer
dizer que se a luz é desviada por objetos acelerados, será desviada por campos gravitacionais
e isso poderia ser testado, basta haver um objeto com massa su�ciente para gerar um campo
gravitacional capaz de alterar a trajetória da luz e um dispositivo sensível o su�ciente para
observar esta alteração. Tal experiência foi realizada em 1919, na cidade de Sobral-CE. Uma
expedição con�rmou com certo grau de precisão, a validade do princípio de equivalência sendo
o começo do legado de uma das teorias que melhor performaram na explicação de fenômenos
conhecidos, como, por exemplo, a precessão do periélio de Mercúrio e previsão de coisas que
até então seriam inimagináveis como as ondas gravitacionais e buracos negros.

2.1.2 Gravidade geométrica

A TRG descreve a gravitação como um efeito da curvatura do espaço-tempo [9]. De acordo com
o princípio da equivalência, a gravidade pode ser anulada localmente, pois é possível de�nir um
observador em queda livre, que é localmente equivalente a um observador inercial. É como se
tal observador experimentasse uma geometria de curvatura nula (localmente). Uma variedade
é justamente a entidade matemática que satisfaz essas condições, ou seja, a variedade é um
espaço continuamente curvo que localmente parece euclidiano. Por exemplo, em curtas escalas
de distância, podemos a�rmar que a superfície terrestre é plana o que não é verdade de modo
global.

As equações de campo de Einstein são fundamentais no estudo da TRG, estando para a
relatividade de Einstein como as equações de Maxwell estão para o eletromagnetismo. Podem
ser obtidas por meio do princípio de minimização aplicado sobre a ação de Einstein-Hilbert,

S =

∫ (
R

2κ
+ LM

)√
−gd4x, (2.1.4)

onde R é o escalar de Ricci, κ = 8πGc−4 e LM representa a densidade lagrangiana que contém a
informação sobre a distribuição de matéria e energia. A variação da ação é inicialmente escreita
como:

δS =
1

2κ

∫
δ
(√

−gR
)
d4x+

∫
δ
(√

−gLM

)
d4x. (2.1.5)
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Vamos calcular termo a termo. Primeiramente,

δ
(√

−gR
)
=

√
−gδR +Rδ

(√
−g
)
, (2.1.6)

que foi obtido no apêndice A. Assim, podemos reescrever a primeira integral em (2.1.5) como:

1

2κ

∫
δ
(√

−gR
)
d4x =

1

2κ

∫ (
Rµν −

1

2
Rgµν

)
δgµν

√
−gd4x

+
1

2κ

∫
∇α

(
gµνδΓα

µν − gµαδΓλ
µλ

)√
−gd4x,

onde �zemos uma mudança nos índices contraídos. A segunda dessa integrais é nula, por se
tratar de uma derivada total, nos restando apenas calcular a variação para o termo LM

√
−g

δ
(
LM

√
−g
)
=

∂ (LM

√
−g)

∂gµν
δgµν +

∂ (LM

√
−g)

∂ (∂αgµν)
δ (∂αg

µν) (2.1.7)

=
∂ (LM

√
−g)

∂gµν
δgµν +

∂ (LM

√
−g)

∂ (∂αgµν)
∂α (δg

µν) (2.1.8)

note que

∂α

[
∂ (LM

√
−g)

∂ (∂αgµν)
δgµν

]
= ∂α

[
∂ (LM

√
−g)

∂ (∂αgµν)

]
δgµν +

∂ (LM

√
−g)

∂ (∂αgµν)
∂α (δg

µν) . (2.1.9)

Logo,

δ
(
LM

√
−g
)
=

∂ (LM

√
−g)

∂gµν
δgµν + ∂α

[
∂ (LM

√
−g)

∂ (∂αgµν)
δgµν

]
− ∂α

[
∂ (LM

√
−g)

∂ (∂αgµν)

]
δgµν , (2.1.10)

rearranjando os termos

δ
(
LM

√
−g
)
=

{
∂ (LM

√
−g)

∂gµν
− ∂α

[
∂ (LM

√
−g)

∂ (∂αgµν)

]}
δgµν + ∂α

[
∂ (LM

√
−g)

∂ (∂αgµν)
δgµν

]
. (2.1.11)

Assim, a segunda integral em (2.1.5) se torna∫
δ
(√

−gLM

)
d4x =

∫ {
∂ (LM

√
−g)

∂gµν
− ∂α

[
∂ (LM

√
−g)

∂ (∂αgµν)

]}
δgµνd4x

+

∫
∂α

[
∂ (LM

√
−g)

∂ (∂αgµν)
δgµν

]
d4x, (2.1.12)

o termo entre colchetes é zero por se tratar de uma derivada total, já o termo entre chaves é a
de�nição do tensor energia-momento Tµν [12]

Tµν =
∂ (LM

√
−g)

∂gµν
− ∂α

[
∂ (LM

√
−g)

∂ (∂αgµν)

]
. (2.1.13)

Finalmente, pelo princípio de mínima ação,

δS =
1

2κ

∫ (
Rµν −

1

2
Rgµν

)
δgµν

√
−gd4x− 1

2

∫
Tµν

√
−gδgµνd4x, (2.1.14)

δS =

∫ [
Rµν −

1

2
Rgµν − κTµν

]
δgµν

√
−gd4x = 0 (2.1.15)
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Rµν −
1

2
Rgµν = κTµν . (2.1.16)

A eq. (2.1.16) é um conjunto de seis equações diferenciais para a métrica, pois a simetria
nos índices reduz as dezesseis equações iniciais para um total de apenas dez e a Identidade de

Bianchi reduz esse número em ainda mais quatro equações [9].
Em contrapartida às equações de Maxwell a equação tensorial acima é não-linear, essa

conclusão é bem óbvia pelo fato de o escalar de Ricci ser composto por derivadas de segunda
ordem da métrica. Aqui o campo gravitacional não tem origem no potencial newtoniano, a
gravidade é a deformação na geometria de uma região do espaço-tempo devido a presença de
um corpo massivo. Outra observação importante é que o termo à esquerda nas equaçãoes
de campo de Einstein representam a geometria de uma determinada região do espaço-tempo,
enquanto o termo à direita representa um termo de fonte, ou seja, a distribuição de matéria
e energia nessa mesma região. Assim, podemos a�rmar que o Einstein encontrou uma relação
matemática que descreve como a geometria do espaço-tempo é afetada sob a presença de uma
fonte de matéria.

Apesar de origens completamente distintas, essas duas teorias devem ser compatíveis com
algumas considerações. Podemos fazer esta a�rmação tendo em vista o sucesso que a gravitação
newtoniana teve antes de Einstein. O chamado limite newtoniano é de�nido por meio de três
condições: as partículas se movem com velocidades não relativísticas, o campo gravitacional é
fraco (podendo ser considerado como uma pequena perturbação no espaço de Minkowski), e o
campo é estático (não varia com o tempo). A métrica que resulta da solução das equações de
Einstein nesse cenário é a seguinte [9]

gµν =


−1− ϕ

c2
0 0 0

0 1− ϕ
c2

0 0

0 0 1− ϕ
c2

0

0 0 0 1− ϕ
c2

 , (2.1.17)

onde ϕ é o potencial newtoniano.

2.2 Cálculo geral do propagador em (3 + 1) dimensões

Nesta seção vamos calcular a forma geral do propagador para teorias gravitacionais não-
massivas. A ideia é retomar o procedimento visto no capítulo 2, mas para os operadores
da base de operadores de Barnes-Rivers que em D dimensões é formada pelo conjunto a seguir
[17]

P
(1)
µν,κλ =

1

2
(θµκωνλ + θµλωνκ + θνκωµλ + θνλωµκ) , (2.2.1)

P
(2)
µν,κλ =

1

2
(θµκθνλ + θµλθνκ)−

1

D − 1
θµνθκλ, (2.2.2)

P
(0−θ)
µν,κλ =

1

D − 1
θµνθκλ, (2.2.3)

P
(0−ω)
µν,κλ = ωµνωκλ, (2.2.4)

P
(0−θω)
µν,κλ =

1√
D − 1

(θµνωκλ + θκλωµν) , (2.2.5)
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onde

θµν = ηµν − ωµν , (2.2.6)

ωµν =
pµpν

p2
. (2.2.7)

No entanto, a nossa abordagem inicialmente ocorrerá num cenário em (3 + 1) dimensões

P
(1)
µν,κλ =

1

2
(θµκωνλ + θµλωνκ + θνκωµλ + θνλωµκ) , (2.2.8)

P
(2)
µν,κλ =

1

2
(θµκθνλ + θµλθνκ)−

1

3
θµνθκλ, (2.2.9)

P
(0−θ)
µν,κλ =

1

3
θµνθκλ, (2.2.10)

P
(0−ω)
µν,κλ = ωµνωκλ, (2.2.11)

P
(0−θω)
µν,κλ =

1√
3
(θµνωκλ + θκλωµν) . (2.2.12)

As contrações dos projetores transversal e longitudinal estão contidas na tabela (2.1), a seguir
vamos calcular algumas contrações e exibiremos a tabela completa.

θαν ωα
ν

θµα θµν 0
ωµα 0 ωµν

Tabela 2.1: Álgebra dos projetores transversal e longitudinal

P
(1)
µν,κλP

(1)κλ
,αβ =

1

2
(θµκωνλ + θµλωνκ + θνκωµλ + θνλωµκ)

× 1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
, (2.2.13)

P
(1)
µν,κλP

(1)κλ
,αβ =

1

4

[
θµκωνλ

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
+ θµλωνκ

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
+ θνκωµλ

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
+θνλωµκ

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)]
, (2.2.14)

usando os resultados da tabela (2.1), temos

P
(1)
µν,κλP

(1)κλ
,αβ =

1

2
(θµαωνβ + θµβωνα + θναωµβ + θνβωµα) = P

(1)
µν,αβ.

P
(2)
µν,κλP

(2)κλ
,αβ =

[
1

2
(θµκθνλ + θµλθνκ)−

1

3
θµνθκλ

]
×
[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θαβθ

κλ

]
,

(2.2.15)

23



P
(2)
µν,κλP

(2)κλ
,αβ =

1

4
(θµκθνλ + θµλθνκ)

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

6

(
θκαθ

λ
β + θλαθ

κ
β

)
θµνθκλ

− 1

6
(θµκθνλ + θµλθνκ) θαβθ

κλ +
1

9
θµνθκλθαβθ

κλ, (2.2.16)

P
(2)
µν,κλP

(2)κλ
,αβ =

1

2
(θµαθνβ + θµβθνα)−

1

3
θµνθαβ = P

(2)
µν,αβ. (2.2.17)

P
(0−θ)
µν,κλP

(0−θ)κλ
,αβ =

1

3
θµνθκλ ×

1

3
θαβθ

κλ =
3

9
θµνθαβ = P

(0−θ)
µν,αβ . (2.2.18)

P
(0−ω)
µν,κλ P (0−ω)κλ

,αβ = ωµνωκλωαβω
κλ = ωµνωαβ = P

(0−ω)
µν,αβ . (2.2.19)

P
(0−θ)
µν,κλP

(0−θω)κλ
,αβ =

1

3
θµνθκλ ×

1√
3

(
θαβω

κλ + θκλωαβ

)
=

1√
3
θµνωαβ. (2.2.20)

Aqui devemos fazer um importante comentário. As contrações que envolvem os projetores
P

(0−θ)
µν,αβ , P

(0−ω)
µν,αβ e P

(0−θω)
µν,αβ não é comutativa, ou seja, ao trocar-se a ordem o resultado muda.

Observe:

P
(0−θω)
µν,κλ P (0−θ)κλ

,αβ =
1√
3
(θµνωκλ + θκλωµν)×

1

3
θαβθ

κλ =
1√
3
ωµνθαβ. (2.2.21)

P
(0−ω)
µν,κλ P (0−θω)κλ

,αβ = ωµνωκλ ×
1√
3

(
θαβω

κλ + θκλωαβ

)
=

1√
3
ωµνθαβ. (2.2.22)

P
(0−θω)
µν,κλ P (0−ω)κλ

,αβ =
1√
3
(θµνωκλ + θκλωµν)× ωαβω

κλ =
1√
3
θµνωαβ. (2.2.23)

P
(0−θω)
µν,κλ P (0−θω)κλ

,αβ =
1√
3
(θµνωκλ + θκλωµν)×

1√
3

(
θαβω

κλ + θκλωαβ

)
,

=
1

3
θµνωκλ

(
θαβω

κλ + θκλωαβ

)
+

1

3
θκλωµν

(
θαβω

κλ + θκλωαβ

)
,

=
1

3
θµνθαβ + ωµνωαβ = P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ . (2.2.24)

Seguindo o método acima, o leitor pode veri�car que calcular o restante das contrações é um
processo relativamente cansativo, por isso sua omissão torna-se razoável. A tabela completa
da álgebra dos projetores de Barnes-Rivers é mostrada a seguir Note que todos os resultados
obtidos no cálculo dessas contrações podem ser escritos em termos dos operadores contidos
no conjunto das eqs. (2.2.8) - (2.2.12), a razão disto reside no fato de este conjunto possuir
todas as combinações lineares entre os projetores transversal e longitudinal que são linearmente
independentes entre si. Isso quer dizer que (2.2.8) - (2.2.12) representam todas as combinações
possíveis entre ωµν e θµν não-redundantes.

Depois da apresentação da base a ser utilizada, seguiremos com o cálculo geral do propa-
gador para teorias gravitacionais. O procedimento que iremos adotar consiste em escrever a
lagrangiana da teoria na forma

L =
1

2
hµνOµν,αβh

αβ, (2.2.25)

24



P (1)κλ
,αβ P (2)κλ

,αβ P (0−θ)κλ
,αβ P (0−ω)κλ

,αβ P (0−θω)κλ
,αβ

P
(1)
µν,κλ P

(1)
µν,αβ 0 0 0 0

P
(2)
µν,κλ 0 P

(2)
µν,αβ 0 0 0

P
(0−θ)
µν,κλ 0 0 P

(0−θ)
µν,αβ 0

1√
3
θµνωαβ

P
(0−ω)
µν,κλ 0 0 0 P

(0−ω)
µν,αβ

1√
3
ωµνθαβ

P
(0−θω)
µν,κλ 0 0

1√
3
ωµνθαβ

1√
3
θµνωαβ P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ

Tabela 2.2: Álgebra dos operadores de Barnes-Rivers

que é conhecida como forma bilinear por apresentar o operador bilinear Oµν,αβ. A forma mais
geral para este operador é

Oµν,αβ = a1P
(1) + a2P

(2) + a3P
(0−θ) + a4P

(0−ω) + a5P
(0−θω), (2.2.26)

cuja forma inversa pode ser escrita como

O−1
µν,αβ = b1P

(1) + b2P
(2) + b3P

(0−θ) + b4P
(0−ω) + b5P

(0−θω). (2.2.27)

Aqui cabe enfatizar duas coisas importantes: o objetivo é escrever os coe�cientes b′s em termos
dos a′s, e que o operador Oµν,αβ possui duas simetrias em seus índices, tais simetrias advém
da própria estrutura da base de Barnes-Rivers. A vírgula que separa os índices tensoriais dos
operadores em dois pares serve para indicar as simetrias mencionadas, ou seja, um projetor
qualquer Xµν,αβ possui uma simetria relacionada à permutação entre os pares separados

Xµν,αβ = Xαβ,µν , (2.2.28)

e uma associada à permutação nos índices dos próprios pares

Xµν,αβ = Xνµ,βα. (2.2.29)

Conhecendo-se a seguinte identidade que pode ser demonstrada por inspeção direta

Iµν,αβ =
1

2
(ηµαηνβ + ηναηµβ) = P

(1)
µν,αβ + P

(2)
µν,αβ + P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ (2.2.30)

e usando a prescrição comum da literatura OO−1 = I, temos

Iµν,αβ =
(
a1P

(1) + a2P
(2) + a3P

(0−θ) + a4P
(0−ω) + a5P

(0−θω)
)
×(

b1P
(1) + b2P

(2) + b3P
(0−θ) + b4P

(0−ω) + b5P
(0−θω)

)
,

desenvolvendo e usando os resultados da tabela (2.2)

P
(1)
µν,αβ + P

(2)
µν,αβ + P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ = a3

(
b3P

(0−θ)
µν,αβ +

1√
3
b5P

(θω)
µν,αβ

)
+ a1b1P

(1)
µν,αβ + a2b2P

(2)
µν,αβ + a4

(
b4P

(0−ω)
µν,αβ +

1√
3
b5P

(ωθ)
µν,αβ

)
+ a5

[
1√
3
b3P

(ωθ)
µν,αβ +

1√
3
b4P

(θω)
µν,αβ + b5

(
P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ

)]
,
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onde, por simplicidade, escrevemos P (θω)
µν,αβ = θµνωαβ e P

(ωθ)
µν,αβ = ωµνθαβ.

P
(1)
µν,αβ + P

(2)
µν,αβ + P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ = (a3b3 + a5b5)P

(0−θ)
µν,αβ

+ a1b1P
(1)
µν,αβ + a2b2P

(2)
µν,αβ + (a4b4 + a5b5)P

(0−ω)
µν,αβ

+
1√
3
(a3b5 + a5b4)P

(θω)
µν,αβ +

1√
3
(a4b5 + a5b3)P

(ωθ)
µν,αβ,

comparando os coe�cientes, obtemos o seguinte sistema:

a1b1 = 1, (2.2.31)

a2b2 = 1, (2.2.32)

a3b3 + a5b5 = 1, (2.2.33)

a4b4 + a5b5 = 1, (2.2.34)

a3b5 + a5b4 = 0, (2.2.35)

a4b5 + a5b3 = 0. (2.2.36)

Este sistema não possui solução direta, vamos escrevê-lo na sua forma matricial e, por meio do
escalonamento, veri�car se uma das equações é combinação linear das outras

a1 0 0 0 0 1
0 a2 0 0 0 1
0 0 a3 0 a5 1
0 0 0 a4 a5 1
0 0 0 a5 a3 0
0 0 a5 0 a4 0

 . (2.2.37)

Multiplicando a linha 6 por a3, a linha 3 por −a5 e substituindo a linha 6 pela soma das novas
linha 3 e 6

a1 0 0 0 0 1
0 a2 0 0 0 1
0 0 a3 0 a5 1
0 0 0 a4 a5 1
0 0 0 a5 a3 0
0 0 a5 0 a4 0

 ˜


a1 0 0 0 0 1
0 a2 0 0 0 1
0 0 −a3a5 0 −a25 −a5
0 0 0 a4 a5 1
0 0 0 a5 a3 0
0 0 0 0 a3a4 − a25 −a5

 , (2.2.38)

multiplicando a linha 5 por −a4, a linha 4 por a5 e dividindo a linha 3 por −a5
a1 0 0 0 0 1
0 a2 0 0 0 1
0 0 −a3a5 0 −a25 −a5
0 0 0 a4 a5 1
0 0 0 a5 a3 0
0 0 0 0 a3a4 − a25 −a5

 ˜


a1 0 0 0 0 1
0 a2 0 0 0 1
0 0 a3 0 a5 1
0 0 0 a4a5 a25 a5
0 0 0 −a4a5 −a3a4 0
0 0 0 0 a3a4 − a25 −a5

 ,

(2.2.39)
substituímos a linha 5 pela soma das linhas 4 e 5 e dividimos a linha 4 por a5

a1 0 0 0 0 1
0 a2 0 0 0 1
0 0 a3 0 a5 1
0 0 0 a4a5 a25 a5
0 0 0 −a4a5 −a3a4 0
0 0 0 0 a3a4 − a25 −a5

 ˜


a1 0 0 0 0 1
0 a2 0 0 0 1
0 0 a3 0 a5 1
0 0 0 a4 a5 1
0 0 0 0 a25 − a3a4 a5
0 0 0 0 a3a4 − a25 −a5

 . (2.2.40)
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Finalmente, substituímos a linha 6 pela soma das linhas 5 e 6
a1 0 0 0 0 1
0 a2 0 0 0 1
0 0 a3 0 a5 1
0 0 0 a4 a5 1
0 0 0 0 a25 − a3a4 a5
0 0 0 0 a3a4 − a25 −a5

 ˜


a1 0 0 0 0 1
0 a2 0 0 0 1
0 0 a3 0 a5 1
0 0 0 a4 a5 1
0 0 0 0 a25 − a3a4 a5
0 0 0 0 0 0

 . (2.2.41)

Desde que a1 ̸= 0, a2 ̸= 0 e a25 − a3a4 ̸= 0, obtemos um novo sistema

a1b1 = 1, (2.2.42)

a2b2 = 1, (2.2.43)

a3b3 + a5b5 = 1, (2.2.44)

a4b4 + a5b5 = 1, (2.2.45)(
a25 − a3a4

)
b5 = a5. (2.2.46)

Observe que uma das linhas da matriz representa uma equação do sistema e que uma dessas
linhas foi zerada, isso signi�ca que uma das equações poderia ser escrita como combinação
linear das outras. O processo de aplicar operações elementares em cada uma das linhas dessa
matriz, além de garantir que a solução a ser obtida para o novo sistema é exatamente igual
à anterior, só conduz a linhas nulas se houver ao menos uma linha redundante. As primeira,
segunda e quinta equações possuem solução direta

b1 =
1

a1
, b2 =

1

a2
, b5 =

a5
a25 − a3a4

. (2.2.47)

As duas restantes podem ser resolvidas facilmente, uma vez conhecido o valor de b5, a terceira
equação torna-se

a3b3 + a5
a5

a25 − a3a4
= 1 −→ b3 = − a4

a25 − a3a4
. (2.2.48)

A quarta
a4b4 + a5

a5
a25 − a3a4

= 1 −→ b4 = − a3
a25 − a3a4

. (2.2.49)

Assim, a solução �nal é

b1 =
1

a1
, b2 =

1

a2
, b3 = − a4

a25 − a3a4
, (2.2.50)

b4 = − a3
a25 − a3a4

, b5 =
a5

a25 − a3a4
, (2.2.51)

e o propagador assume a forma

O−1
µν,αβ =

1

a1
P (1) +

1

a2
P (2) − a4

a25 − a3a4
P (0−θ) − a3

a25 − a3a4
P (0−ω) +

a5
a25 − a3a4

P (0−θω),

O−1
µν,αβ =

1

a1
P (1) +

1

a2
P (2) − 1

a25 − a3a4

(
a4P

(0−θ) + a3P
(0−ω) − a5P

(0−θω)
)
, (2.2.52)

ou na forma de Feynman △µν,αβ = iO−1
µν,αβ

△µν,αβ = i

[
1

a1
P

(1)
µν,αβ +

1

a2
P

(2)
µν,αβ −

1

a25 − a3a4

(
a4P

(0−θ)
µν,αβ + a3P

(0−ω)
µν,αβ − a5P

(0−θω)
µν,αβ

)]
.

Em resumo, o cálculo do propagador para teorias gravitacionais terá como regra o seguinte
roteiro:
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1. Escrever a densidade lagrangiana na forma linearizada por meio da prescrição

gµν = ηµν + hµν . (2.2.53)

2. Obter a forma bilinear da lagrangiana linearizada, ou seja, reescrevê-la sob a forma

L =
1

2
hµνOµν,αβh

αβ. (2.2.54)

3. Reescrever o operador Oµν,αβ em termos dos operadores da base de Barnes-Rivers.

4. Identi�car os coe�cientes a1, a2, a3, a4 e a5 e substituir na eq. (2.2.27).

2.3 Propagador para o gráviton livre

O propagador mais simples é o do gráviton livre. De imediato podemos inferir que só haverá
um polo no propagador, sendo este equivalente à relação de dispersão que se obtém para ondas
gravitacionais planas, ou seja, só existe um modo de propagação da interação gravitacional
neste cenário. Mais adiante, veremos que em outros quadros o propagador apresentará mais de
um polo e estes estarão associados às constantes de acoplamento dos termos introduzidos.

A densidade lagrangiana adequada para a obtenção do propagador do gráviton livre é

L = LE−H + LG−F , (2.3.1)

onde LE−H é originária da ação de Einstein-Hilbert, cuja forma explícita é

SE−H =

∫ √
−gRdx4, (2.3.2)

e LG−F é o termo de �xação de calibre (gauge-�xing)

LG−F =
1

2α

(
∂νh

µν − 1

2
∂µh

)(
∂κhµκ −

1

2
∂µh

)
, (2.3.3)

sendo α uma constante adimensional. Existem diversos tipos de gauge na literatura [17], o que
adotamos neste trabalho recebe o nome de de Donder. A introdução de um termo de gauge-
�xing é aqui necessária, pois LE−H possui uma simetria de gauge local originária da linearização
(2.2.53). De fato, a lagrangiana (2.3.6) é invariante sob a transformação de coordenadas in�ni-
tesimal

xµ → xµ + ξµ (x) , (2.3.4)

onde ξµ (x) é um vetor in�nitesimal que depende de xµ. Com isso, o escalar de Ricci, que
compõe a ação (2.3.2) é invariante sob a seguinte transformação no campo hµν ,

hµν (x) → hµν (x)− ∂νξµ (x)− ∂µξν (x) . (2.3.5)

conhecida como transformação de gauge. Essa transformação não altera a física do campo
gravitacional que é representado pelo tensor hµν , ou seja, independente da forma do vetor
ξµ (x), o campo gravitacional será exatamente o mesmo. Assim, temos uma liberdade de gauge
sobre o campo hµν que pode ser interpretada como uma livre escolha do campo hµν dado pela
expressão (2.3.5).
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Seguindo os passos descritos na seção anterior, iniciaremos escrevendo a expansão da la-
grangiana de Einstein-Hilbert em segunda ordem (veja o apêndice B)

LE−H = −1

4
∂αh∂αh+

1

2
∂αh∂βhαβ +

1

4
∂γhαβ∂γh

αβ − 1

2
∂βhαγ∂αhβγ. (2.3.6)

No caso especí�co do escalar de Ricci é necessário os termos de segunda ordem, a justi�cativa
está no fato de os termos de primeria ordem serem derivadas totais e não possuírem uma forma
quadrática no campo hµν , requisito imprescindível para obtermos sua forma bilinear. Aplicando
a regra do produto de derivação podemos reescrever as parcelas de forma conveniente

∂α (h∂αh) = ∂αh∂αh+ h□h, (2.3.7)

∂α
(
h∂βhαβ

)
= ∂αh∂βhαβ + h∂α∂βhαβ, (2.3.8)

∂γ
(
hαβ∂γh

αβ
)
= ∂γhαβ∂γh

αβ + hαβ□hαβ, (2.3.9)

∂β (hαγ∂αhβγ) = ∂βhαγ∂αhβγ + hαγ∂β∂αhβγ. (2.3.10)

Observe que podemos substituir diretamente esses termos, pois as parcelas que possuem deri-
vadas totais não irão contribuir. Logo,

LE−H =
1

4
h□h− 1

2
h∂α∂βhαβ −

1

4
hαβ□hαβ +

1

2
hαγ∂β∂αhβγ. (2.3.11)

Vamos agora usar a métrica para expressarmos a lagrangiana linearizada na sua forma bilinear

LE−H =
1

2
hµν

(
1

2
ηµνηαβ□− ηµν∂α∂β −

1

2
ηµαηνβ□+ ηνα∂β∂µ

)
hαβ. (2.3.12)

Trabalhando com a parte correspondente ao termo de �xação de calibre, no intuito de também
reescrevê-la na forma bilinear

LG−F =
1

2α

(
∂νh

µν − 1

2
∂µh

)
×
(
∂κhµκ −

1

2
∂µh

)
,

=
1

2α

(
∂νh

µν∂κhµκ −
1

2
∂νh

µν∂µh− 1

2
∂µh∂κhµκ +

1

4
∂µh∂µh

)
. (2.3.13)

Por meio da renomeação de índices contraídos da terceira parcela entre parênteses, temos

LG−F =
1

2α

(
∂νh

µν∂κhµκ − ∂νh
µν∂µh+

1

4
∂µh∂µh

)
. (2.3.14)

Novamente, reescrevendo as parcelas em termos de derivadas do produto e desprezando os
termos relacionados a derivadas totais, resulta

LG−F =
1

2α

(
h∂µ∂νh

µν − hµν∂ν∂
κhµκ −

1

4
h□h

)
, (2.3.15)

usamos a métrica para expor a sua forma bilinear

LG−F =
1

2α
hµν

(
ηµν∂α∂β − ηνβ∂µ∂α − 1

4
ηµνηαβ□

)
hαβ. (2.3.16)
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A lagrangiana total L = LE−H + LG−F , na sua forma linearizada é a seguinte

L =
1

2
hµν

[
1

2
ηµνηαβ□− ηµν∂α∂β −

1

2
ηµαηνβ□+ ηνα∂β∂µ

+
1

α

(
ηµν∂α∂β − ηνβ∂µ∂α − 1

4
ηµνηαβ□

)]
hαβ, (2.3.17)

de onde extraímos o operador

Oµν,αβ =
1

2
ηµνηαβ□− ηµν∂α∂β −

1

2
ηµαηνβ□+ ηνα∂µ∂β

+
1

α

(
ηµν∂α∂β − ηνβ∂µ∂α − 1

4
ηµνηαβ□

)
, (2.3.18)

que constitui o núcleo estrutural da lagrangiana

L =
1

2
hµνOµν,αβh

αβ. (2.3.19)

2.3.1 Simetrização do operador O e cálculo do propagador

Observando atentamente o operador da eq. (2.3.18), podemos observar que existem parcelas
que não satisfazem às simetrias presentes nos projetores da base de Barnes-Rivers, eliminando
a possibilidade de serem escritos em termos dos mesmos. Neste caso, torna-se imprescindível
a simetrização de cada uma das parcelas não-simetrizadas, tal simetrização pode ser realizada
facilmente ao usarmos o fato de que as componentes simétricas de um tensor podem ser escritas
como

A(µν) =
1

2
(Aµν + Aνµ) . (2.3.20)

Nos valemos deste resultado sustentados pela possibilidade de qualquer tensor ser dividido em
duas partes: uma simétrica e outra antissimétrica e também pela condição de o operador O
ser bilinear no campo hµν , esta segunda a�rmativa anula a componente antissimétrica que
decorre da primeira. Assim, quaisquer termos que não possuem simetria de�nida podem ser
simetrizadas por meio da eq. (2.3.20). Deve-se ter bastante cuidado ao aplicar esse método,
antes de tudo é necessário observar se a parcela a ser simetrizada já não possui alguma simetria
como em ηµν∂α∂β, os índices da métrica e as derivadas parciais comutam, logo há apenas uma
simetrização a ser feita

ηµν∂α∂β =
1

2
(ηµν∂α∂β + ηαβ∂µ∂ν) , (2.3.21)

em seguida, temos o produto de duas métricas ηµαηνβ, já existe uma simetria presente

ηµαηνβ =
1

2
(ηµαηνβ + ηµβηνα) , (2.3.22)

a última ηνα∂µ∂β não possui qualquer simetria a ser aproveitada tornando necessário aplicar o
método de simetrização duas vezes

ηνα∂µ∂β =
1

2
(ηνα∂µ∂β + ηνβ∂µ∂α) ,

=
1

4
(ηνα∂µ∂β + ηµα∂ν∂β + ηνβ∂µ∂α + ηµβ∂ν∂α) ,

= ηνβ∂µ∂α. (2.3.23)
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Desse modo, os termos simetrizados correspondentes serão

ηµν∂α∂β =
1

2
(ηµν∂α∂β + ηαβ∂µ∂ν) , (2.3.24)

ηµαηνβ =
1

2
(ηµαηνβ + ηµβηνα) , (2.3.25)

ηνα∂µ∂β =
1

4
(ηνα∂µ∂β + ηµα∂ν∂β + ηνβ∂µ∂α + ηµβ∂ν∂α) , (2.3.26)

ou ainda no espaço dos momentos

ηµνpαpβ =
1

2
(ηµνpαpβ + ηαβpµpν) , (2.3.27)

ηµαηνβ =
1

2
(ηµαηνβ + ηµβηνα) , (2.3.28)

ηναpµpβ =
1

4
(ηναpµpβ + ηµαpνpβ + ηνβpµpα + ηµβpνpα) , (2.3.29)

Substituindo todas essas parcelas, agora simetrizadas, na eq. (2.3.18)

Oµν,αβ =
1

2
ηµνηαβ□− 1

2
(ηµν∂α∂β + ηαβ∂µ∂ν)−

1

4
(ηµαηνβ + ηµβηνα)□

+
1

4
(ηνα∂µ∂β + ηµα∂ν∂β + ηνβ∂µ∂α + ηµβ∂ν∂α) +

1

α

[
1

2
(ηµν∂α∂β + ηαβ∂µ∂ν)

−1

4
(ηνα∂µ∂β + ηµα∂ν∂β + ηνβ∂µ∂α + ηµβ∂ν∂α)−

1

4
ηµνηαβ□

]
. (2.3.30)

Agora devemos usar as identidades dos operadores de Barnes-Rivers [17] listadas abaixo

ηµνηαβ = 3P (0−θ) + P (0−ω) +
√
3P (0−θω), (2.3.31)

ηµν∂α∂β + ηαβ∂µ∂ν = 2P (0−ω) +
√
3P (0−θω), (2.3.32)

ηνα∂µ∂β + ηµα∂ν∂β + ηνβ∂µ∂α + ηµβ∂ν∂α = 2P (1) + 4P (0−ω), (2.3.33)

ηµαηνβ + ηµβηνα = 2
(
P (0−θ) + P (0−ω) + P (1) + P (2)

)
, (2.3.34)

para então escrever:

Oµν,αβ =
1

2

(
3P (0−θ) + P (0−ω) +

√
3P (0−θω)

)
□

− 1

2

(
2P (0−ω) +

√
3P (0−θω)

)
□− 1

2

(
P (0−θ) + P (0−ω) + P (1) + P (2)

)
□

+
1

2

(
P (1) + 2P (0−ω)

)
□+

1

α

[
1

2

(
2P (0−ω) +

√
3P (0−θω)

)
−1

2

(
P (1) + 2P (0−ω)

)
− 1

4

(
3P (0−θ) + P (0−ω) +

√
3P (0−θω)

)]
□, (2.3.35)

agrupando os coe�cientes semelhantes

Oµν,αβ =

(
4α− 3

4α

)
□P (0−θ) − □

2α
P (1) − □

2
P (2) − □

4α
P (0−ω) +

√
3□
4α

P (0−θω). (2.3.36)
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Com isso, é possível identi�car os coe�cientes

a1 = − □
2α

, a2 = −□
2
, a3 =

(
4α− 3

4α

)
□, a4 = − □

4α
e a5 =

√
3□
4α

necessários para escrevermos o propagador do gráviton livre por meio da eq. (2.2.52)

O−1
µν,αβ = −2α

□
P (1) − 2

□
P (2) − 4α

□

(
− 1

4α
P (0−θ) +

4α− 3

4α
P (0−ω) −

√
3

4α
P (0−θω)

)
,

O−1
µν,αβ = −2α

□
P (1) − 2

□
P (2) +

P (0−θ) − (4α− 3)P (0−ω) +
√
3P (0−θω)

□
. (2.3.37)

Uma outra forma de escrever o propagador acima é usar a notação de Feynman

∆µν,αβ = iO−1
µν,αβ, (2.3.38)

onde ∆µν,αβ é o valor esperado no vácuo do produto temporalmente ordenado dos campos,
resultado presente no estudo de Teoria Quântica de Campos (TQC)

∆µν,αβ (x− y) = ⟨0 |T [hµν (x)hαβ (y)]| 0⟩ . (2.3.39)

Assim, no espaço dos momentos, o propagador da teoria gravitacional de Einstein-Hilbert será

∆µν,αβ =
i

p2

[
2αP

(1)
µν,αβ + 2P

(2)
µν,αβ + (4α− 3)P

(0−ω)
µν,αβ − P

(0−θ)
µν,αβ −

√
3P

(0−θω)
µν,αβ

]
. (2.3.40)

Note que o único polo do propagador é

p2 = 0,

cuja relação de dispersão associada é

p2 = p20 − |p|2 = 0. (2.3.41)

A velocidade de grupo desse modo de propagação pode ser obtida por meio da relação

ug =
dp0
d |p|

, (2.3.42)

logo,
ug = 1, (2.3.43)

que coincide com a velocidade de fase uf

uf =
p0
|p|

= 1. (2.3.44)

Note que a propagação de sinais na teoria gravitacional de Einstein-Hilbert é causal. Nessa teo-
ria o gráviton, partícula mediadora da interação gravitacional, possui velocidade de propagação
igual a do fóton, que é a partícula mediadora da interação eletromagnética.
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2.4 Unitariedade tree-level

A gravitação de Einstein-Hilbert, por ser uma teoria clássica de campos, precisa exibir propa-
gação de sinais consistente com o princípio de causalidade e com a unitariedade. Logo, o modo
não-massivo p2 = 0 dos grávitons não deverá produzir excitações de norma negativa. Usaremos
esta a�rmação para encontrar um resultado que servirá de baliza para as próximas análises
de unitariedade, por meio do mecanismo de saturação do propagador por correntes externas
conservadas (pµJµν = 0). A análise dessa seção será voltada para as excitações usuais do grá-
viton (descritas no bojo da teoria de Einstein-Hilbert). Iniciamos nosso estudo apresentando o
propagador saturado e discutindo quais projetores contribuem de fato para a saturação. Com
isso, a saturação do propagador é dada por:

SP = JµνRes [∆µν,αβ] J
αβ. (2.4.1)

Usando o propagador (2.3.40), temos

SP = JµνRes

[
2iα

p2
P (1) +

2i

p2
P (2) + i

(4α− 3)P (0−ω) − P (0−θ) −
√
3P (0−θω)

p2

]
Jαβ. (2.4.2)

Ao observarmos os operadores da base de Barnes-Rivers, podemos notar que todos os que são
proporcionais ao projetor longitudinal ωµν gerarão contribuição nula em razão da conservação
da corrente, ou seja

JµνP
(1)
µν,αβJ

αβ =
1

2
Jµν (θµαωνβ + θµβωνα + θναωµβ + θνβωµα) J

αβ = 0, (2.4.3)

JµνP
(0−ω)
µν,αβ J

αβ = JµνωµνωαβJ
αβ = 0, (2.4.4)

JµνP
(0−θω)
µν,αβ Jαβ = Jµν (θµνωαβ + θαβωµν) J

αβ = 0. (2.4.5)

Apenas dois contribuirão, são estes P (2)
µν,αβ e P

(0−θ)
µν,αβ . O primeiro resulta ser

JµνP
(2)
µν,αβJ

αβ =
1

2
Jµν (θµαθνβ + θµβθνα) J

αβ − 1

3
JµνθµνθαβJ

αβ,

= JαβJ
αβ − 1

3
(Jα

α)
2 . (2.4.6)

Note que a contração em θµν funciona como levantamento/abaixamento de índices, uma vez
que θµν = ηµν −ωµν , enquanto a contribuição advinda de ωµν se anula. O segundo foi calculado
acima, logo

JµνP
(0−θ)
µν,αβJ

αβ =
1

3
(Jα

α)
2 . (2.4.7)

Considerando apenas os termos não nulos, obtemos a saturação:

SP = iRes

[
1

p2

(
2JαβJ

αβ − 2

3
(Jα

α)
2 − 1

3
(Jα

α)
2

)]
,

= iRes

[
1

p2
(
2JαβJ

αβ − (Jα
α)

2)] . (2.4.8)

A partir da conservação da corrente, podemos derivar as seguintes relações

J00 =
papc
p20

Jca, (2.4.9)

J0a =
pc
p0
Jca. (2.4.10)
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que nos permitem reescrever a 2JαβJ
αβ − (Jα

α)
2 como se segue

2JαβJ
αβ − (Jα

α)
2 = 2J0βJ

0β + 2JcβJ
cβ −

(
J0

0 + Ja
a

)2
, (2.4.11)

= 2J00J
00 + 2J0aJ

0a + 2Jc0J
c0 + 2JcaJ

ca − (J00 − Jaa)
2 . (2.4.12)

Independentemente da assinatura usada para a métrica, teremos J00 = J00, J0a = −J0a, Jca =
J ca. Assim, temos:

2JαβJ
αβ − (Jα

α)
2 = 2 (J00)

2 − (J00)
2 + 2J00Jaa

− (Jaa)
2 − 2 (J0a)

2 − 2 (Jc0)
2 + 2 (Jca)

2 . (2.4.13)

Usando as eqs. (2.4.9), temos

2JαβJ
αβ − (Jα

α)
2 =

(papcJca)
2

p40
+ 2

papc
p20

JcaJaa

− (Jaa)
2 − 2

(pcJca)
2

p0
− 2

(paJca)
2

p0
+ 2 (Jca)

2 , (2.4.14)

agrupando os termos semelhantes, resulta

2JαβJ
αβ − (Jα

α)
2 =

(
papcJca

p20
+ Jaa

)2

+ 2 (Jca)
2 − 4

(pcJca)
2

p0
− 2 (Jaa)

2 . (2.4.15)

Logo, o resíduo em p2 = 0 será dado por

Res|p20−|p|2=0 =

(
papcJca

p20
+ Jaa

)2

+ 2 (Jca)
2 − 4

(pcJca)
2

p0
− 2 (Jaa)

2 ,

=

(
papcJca

|p|2
+ Jaa

)2

+ 2 (Jca)
2 − 4

(pcJca)
2

|p|
− 2 (Jaa)

2 ,

e a saturação do propagador

SP = i

[(
papcJca

|p|2
+ Jaa

)2

+ 2 (Jca)
2 − 4

(pcJca)
2

|p|
− 2 (Jaa)

2

]
. (2.4.16)

A informação que deve ser ressaltada é a seguinte: para que a gravitação de Einstein-Hilbert
seja unitária, a parte imaginária do resíduo da saturação deve ser positiva. Assim, a expressão
acima, deve ser também positiva. Portanto, decorre:(

papcJca

|p|2
+ Jaa

)2

+ 2 (Jca)
2 − 4

(pcJca)
2

|p|
− 2 (Jaa)

2 > 0. (2.4.17)

2.5 Graus de liberdade (abordagem 1)

Nesta seção vamos discutir sobre os graus de liberdade do campo gravitacional, dentro da teoria
de Einstein-Hilbert. Seguiremos um procedimento similar ao adotado na Ref. [22] para efetuar
essa análise e chegaremos a conclusão de que essa abordagem não é adequada em se tratando
de teorias invariantes de calibre.
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Note que o campo hµν possui em princípio um total de 16 componentes independentes, mas,
a existência da simetria entre µ e ν reduz esse número para apenas 10. A equação de movimento
obtida da lagrangiana (2.2.54) é dada a seguir

Oµν,αβh
αβ = 0, (2.5.1)

onde o operador O é o mesmo da eq. (2.3.36). Iniciamos por contrair a eq. (2.5.1) com pµpν ,
ou seja,

pµpνOµν,αβh
αβ = 0. (2.5.2)

A forma do operador O está presente na eq. (2.2.26), assim

pµpν
[
a1P

(1)
µν,αβ + a2P

(2)
µν,αβ + a3P

(0−θ)
µν,αβ + a4P

(0−ω)
µν,αβ + a5P

(0−θω)
µν,αβ

]
hαβ = 0. (2.5.3)

Portanto, para obter o resultado da equação anterior, devemos contrair os projetores (2.2.8)-
(2.2.12) com pµpν individualmente:

pµpνP
(0−θ)
µν,αβ =

1

3
pµpνθµνθαβ = 0, (2.5.4)

pµpνP
(1)
µν,αβ =

1

2
pµpν (θµαωνβ + θµβωνα + θναωµβ + θνβωµα) = 0, (2.5.5)

pµpνP
(2)
µν,αβ = pµpν

[
1

2
(θµαθνβ + θµβθνα)−

1

3
θµνθαβ

]
= 0, (2.5.6)

pµpνP
(0−ω)
µν,αβ = pµpνωµνωαβ = p2ωαβ, (2.5.7)

pµpνP
(0−θω)
µν,αβ =

1√
3
pµpν (θµνωαβ + θαβωµν) =

1√
3
p2θαβ. (2.5.8)

Com esses resultados, a eq. (2.5.3) torna-se:

p2
(
a4ωαβ +

a5√
3
θαβ

)
hαβ = 0, (2.5.9)

onde
θαβh

αβ = h− ωαβh
αβ, (2.5.10)

resultando em

a4ωαβh
αβ +

a5√
3

(
h− ωαβh

αβ
)
= 0, (2.5.11)(

a4
√
3− a5

)
ωαβh

αβ + a5h = 0. (2.5.12)

Lembrando que para a lagrangiana de Einstein-Hilbert, vale:

a4 =
1

4α
p2, a5 = −

√
3

4α
p2, (2.5.13)

encontramos:
2
√
3

4α
p2ωαβh

αβ −
√
3

4α
p2h = 0, (2.5.14)

pαpβh
αβ =

1

2
p2h, (2.5.15)
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que constitui uma primeira equação de vínculo sobre os graus de liberdade da teoria. Seguindo
a investigação, realizamos uma segunda contração entre a eq. (2.5.1) e ηµν :

ηµνOµν,αβh
αβ = 0, (2.5.16)

ηµν
[
a1P

(1)
µν,αβ + a2P

(2)
µν,αβ + a3P

(0−θ)
µν,αβ + a4P

(0−ω)
µν,αβ + a5P

(0−θω)
µν,αβ

]
hαβ = 0. (2.5.17)

Realizando a contração de ηµν com os projetores, temos

ηµνP
(0−θ)
µν,αβ =

1

3
ηµνθµνθαβ = θαβ, (2.5.18)

ηµνP
(1)
µν,αβ =

1

2
ηµν (θµαωνβ + θµβωνα + θναωµβ + θνβωµα) = 0, (2.5.19)

ηµνP
(2)
µν,αβ =

[
1

2
(θναθνβ + θνβθνα)− θαβ

]
= θαβ − θαβ = 0, (2.5.20)

ηµνP
(0−ω)
µν,αβ = ηµνωµνωαβ = ωαβ, (2.5.21)

ηµνP
(0−θω)
µν,αβ =

1√
3
ηµν (θµνωαβ + θαβωµν) =

1√
3
(3ωαβ + θαβ) . (2.5.22)

Substituindo estes termos em (2.5.17), resulta[(
a3 +

1√
3
a5

)
θαβ +

(
a4 +

√
3a5

)
ωαβ

]
hαβ = 0. (2.5.23)

Sabemos que

a3 = −
(
4α− 3

4α

)
p2, a4 =

1

4α
p2 e a5 = −

√
3

4α
p2, (2.5.24)

logo,
[(2α− 1) θαβ + ωαβ]h

αβ = 0, (2.5.25)

pαpβh
αβ =

(2α− 1)

2 (α− 1)
p2h. (2.5.26)

Combinando (2.5.26) com a eq. (2.5.15), decorre

h = 0, (2.5.27)

pαpβh
αβ = 0. (2.5.28)

As eqs. (2.5.27) e (2.5.28) representam dois vínculos sobre as componentes de hµν . Por último,
calcularemos a contração,

pµOµν,αβh
αβ = 0, (2.5.29)

pµ
[
a1P

(1)
µν,αβ + a2P

(2)
µν,αβ + a3P

(0−θ)
µν,αβ + a4P

(0−ω)
µν,αβ + a5P

(0−θω)
µν,αβ

]
hαβ = 0. (2.5.30)

Novamente, fazendo a contração em cada uma das parcelas separadamente,

pµP
(0−θ)
µν,αβ =

1

3
pµθµνθαβ = 0, (2.5.31)

pµP
(1)
µν,αβ =

1

2
pµ (θµαωνβ + θµβωνα + θναωµβ + θνβωµα) =

1

2
(θναpβ + θνβpα) , (2.5.32)
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pµP
(2)
µν,αβ = pµ

[
1

2
(θµαθνβ + θµβθνα)−

1

3
θµνθαβ

]
= 0, (2.5.33)

pµP
(0−ω)
µν,αβ = pµωµνωαβ = pνωαβ, (2.5.34)

pµP
(0−θω)
µν,αβ =

1√
3
pµ (θµνωαβ + θαβωµν) =

1√
3
pνθαβ, (2.5.35)

que ao subsituir em (2.5.30), resulta[
1

2
a1 (θναpβ + θνβpα) + a4pνωαβ +

1√
3
a5pνθαβ

]
hαβ = 0, (2.5.36)

onde

a1 =
1

2α
p2, a4 =

1

4α
p2, a5 = −

√
3

4α
p2. (2.5.37)

Finalmente, encontramos

(2θνβpα + pνωαβ − pνθαβ)h
αβ = 0,

2pαh
α
ν − pνh = 0, (2.5.38)

e, como já conhecemos h = 0, temos
pαh

α
ν = 0. (2.5.39)

Esta equação estabelece um total de 4 vínculos, que ao juntarmos com aqueles expressos nas eqs.
(2.5.27) e (2.5.28) totalizam 6 restrições. Assim, das 10 componentes de hµν , restam apenas:
10 − 6 = 4. Note que essa abordagem não elimina completamente os graus de liberdade não-
físicos na teoria de Einstein-Hilbert.

2.6 Graus de liberdade (abordagem 2)

Vimos na seção anterior que o método de contagem adotado por [22], não funciona em teorias
invariantes de calibre. Para obter corretamente as componentes propagantes de hµν , seguiremos
a mesma abordagem do Weinberg [18], com alguns elementos do Schutz [19]. Com o intuito de
auferir corretamente os graus de liberdade da teoria gravitacional de Einstein-Hilbert, vamos
considerar a solução para ondas planas (solução homogênea). As equações de Einstein, em sua
forma homogênea (Tµν = 0), são dadas por:

Rµν −
1

2
Rgµν = 0, (2.6.1)

que em primeira ordem em hαβ pode ser escrita como (veja o anexo C):

□hµν − ∂ν∂βh
β
µ − ∂µ∂βh

β
ν + ∂µ∂νh+ ηµν∂α∂βh

αβ − ηµν□h = 0. (2.6.2)

A eq. (2.6.2) pode ser reescrita usando a transformação,

h̄µν = hµν −
1

2
ηµνh, (2.6.3)

que implica em
□h̄µν − ∂ν∂βh̄

β
µ − ∂µ∂βh̄

β
ν + ηµν∂α∂βh̄

αβ = 0. (2.6.4)
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A transformação dada por (2.6.3) é conhecida como traço-reverso, pois,

h̄µ
µ = h̄ = −h. (2.6.5)

Como já mencionado na seção (2.3), a lagrangiana de Einstein-Hilbert é invariante sob a trans-
formação,

hµν (x) → hµν (x)− ∂νξµ (x)− ∂µξν (x) , (2.6.6)

portanto, (2.6.2) também o será. Aplicando (2.6.6) em (2.6.3), podemos obter uma transfor-
mação que torna a eq. (2.6.4) invariante, dada a seguir

h̄µν → h̄µν − ∂νξµ − ∂µξν + ηµν∂
αξα, (2.6.7)

cuja derivada fornece:
∂µh̄µν → ∂µh̄µν −□ξν . (2.6.8)

Visto que a eq. (2.6.4) é invariante sob a transformação (2.6.7), há uma liberdade na escolha
do vetor ξµ, vamos escolher um tal que a eq. (2.6.4) seja uma equação de onda. Escolhemos
então,

□ξν = ∂µh̄µν = 0, (2.6.9)

que ao substituirmos na eq. (2.6.4), fornece a seguinte equação de onda:

□h̄µν = 0. (2.6.10)

Vamos agora analisar as soluções da eq. (2.6.10). Sabemos que uma equação homogênea forma
uma base que fornece as soluções para sua versão não-homogênea. Escrevemos a solução da eq.
(2.6.10) na forma:

h̄µν = eµν exp (ipαx
α) + e∗µν exp (−ipαx

α) , (2.6.11)

onde eµν é um tensor simétrico conhecido como tensor de polarização. Aplicando essa solução
na eq. (2.6.10), temos

pαp
α = 0, (2.6.12)

que reproduz o resultado (2.3.43). Já a condição (2.6.9) implica em

pµe
µ
ν =

1

2
pνe

µ
ν . (2.6.13)

Como vimos, eµν é um tensor simétrico, logo possui apenas dez componentes independentes.
Tal simetria decorre diretamente do fato de h̄µν também ser um tensor simétrico. Assim, tendo
em vista a eq. (2.6.13), as componentes independentes de eµν se reduzem a apenas seis. No
entanto, há apenas dois graus de liberdade propagantes dentro da teoria gravitacional, ou seja,
somente duas dessas componentes têm signi�cado físico. Sabemos que a equação (2.6.10) ,
dentro da escolha denotada pela eq. (2.6.9), é invariante sob a transformação (2.6.7), vamos
propor uma forma especí�ca para o vetor ξµ, e veri�car como essa mudança afeta a solução
(2.6.11). Seja,

ξ′µ = iξµ exp (ipαx
α)− iξ∗µ exp (−ipαx

α) , (2.6.14)

temos:
∂νξ

′
µ = −ipνξµ exp (ipαx

α)− ipµξ
∗
µ exp (−ipαx

α) . (2.6.15)

Logo,
h̄′
µν (x) = h̄µν (x)− ∂νξ

′
µ (x)− ∂µξ

′
ν (x) (2.6.16)
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torna-se:

h̄′
µν (x) = eµν exp (ipαx

α) + e∗µν exp (−ipαx
α)− ∂νξ

′
µ (x)− ∂µξ

′
ν (x) . (2.6.17)

Ao substituir (2.6.15) na expressão acima, obtemos o resultado

h̄′
µν (x) = e′µν exp (ipαx

α) + e′∗µν exp (−ipαx
α) , (2.6.18)

onde
e′µν = eµν + pνξµ + pµξν . (2.6.19)

Observe que a solução (2.6.18) possui a mesma forma de (2.6.11). Portanto, e′µν e eµν repre-
sentam a mesma física independentemente da escolha do vetor ξµ. Além disso, uma escolha
arbitrária de ξµ possui quatro componentes distintas (uma para cada índice livre). Logo, as
componentes independentes de hµν se resumem a apenas duas (6−4 = 2), que são os dois graus
de liberdade físicos na teoria de Einstein-Hilbert.
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CAPÍTULO 3
Alguns modelos alternativos de gravitação

A teoria da relatividade geral tem sido amplamente testada por diversos experimentos ao longo
dos anos, e sempre tem se provado bem-sucedida não apenas na que diz respeito à veri�cação
experimental, mas também na previsão de novos efeitos como as ondas gravitacionais. No
entanto, a despeito de seu sucesso experimental, a TRG proposta por Einstein não se enquadra
no rol das teorias de campo renormalizáveis, sendo incompatível com o Modelo Padrão. Neste
capítulo abordaremos o cálculo do propagador em duas teorias gravitacionais alternativas à de
Einstein-Hilbert: gravitação com termos quadráticos e em (2+1) dimensões.

Uma ação que contenha termos quadráticos em teorias gravitacionais, pode ser generica-
mente escrita como [10]:

S =

∫
dnx

√
−g
(
R + α1R

2 + α2R
µνRµν + α3g

µν∂µR∂νR + ...
)
,

onde os coe�cientes αi representam constantes de acoplamento e a reticências termos diversos
que podem ser construídos pela combinação dos escalar e tensor de Ricci. Neste trabalho abor-
daremos apenas as três primeiras parcelas, o restante será desconsiderado por não possuírem
contribuição signi�cativa, mas apenas complicações indesejadas.

3.1 Propagador para teorias gravitacionais quadráticas

Dando continuidade à aplicação do método geral para a obtenção do propagador de teorias
gravitacionais, exempli�caremos seu cálculo para um caso diferente do anterior: uma teoria
gravitacional com termos quadráticos em R e Rµν na ação. Tais teorias surgiram da tentativa de
encontrar uma alternativa viável dotada de altas derivadas [13] e [14], teoricamente consistente
com os dados experimentais e que seja renormalizável. Tais teorias, por sua vez, trazem consigo
um outro fator: modos massivos que surgem por conta dos termos de altas derivadas associados
com os termos R2 e RµνRµν . Tais modos podem ser um problema, pois a massa do gráviton é
extremamente limitada. No entanto, a despeito dessa problemática, calcularemos o propagador
neste cenário, onde notaremos o surgimento dos modos massivos que decorrem diretamente dos
polos obtidos no propagador.

A lagrangiana para este caso é a seguinte [14] e [17]

L = LE−H +
σ

2
R2 +

γ

2
RµνRµν + LG−F . (3.1.1)
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As constantes σ e γ possuem dimensão de massa igual a −2 ([σ] = [γ] = −2). Já conhecemos
a forma bilinear da parte correspondente à ação Einstein-Hilbert e à �xação de calibre. Resta
então lidar com os termos quadráticos dos escalar e tensor de Ricci. Usando a forma linearizada
do escalar de Ricci, escrevemos:

R2 = (∂µ∂νh
µν −□h)

(
∂α∂βh

αβ −□h
)
,

=
(
∂µ∂νh

µν∂α∂βh
αβ − ∂µ∂νh

µν□h
)
−□h∂α∂βh

αβ +□h□h. (3.1.2)

Seguindo os mesmos passos já apresentado em seções anteriores, temos

R2 = hµν
(
−ηµν∂α∂β□− ηαβ∂µ∂ν□+ ηµνηαβ□

2 + ∂µ∂ν∂α∂β
)
hαβ. (3.1.3)

Partindo da forma linearizada do tensor de Ricci consideramos a seguinte expressão para o
quadrado do tensor de Ricci:

RµνRµν =
1

2

(
∂β∂νh

β
µ −□hµν − ∂µ∂νh+ ∂β∂µh

β
µ

)
× 1

2
(∂α∂νhµ

α −□hµν − ∂µ∂νh+ ∂α∂µhν
α) . (3.1.4)

Desenvolvendo e renomeando os índices contraídos de forma conveniente, resulta

RµνRµν =
1

4

(
2∂β∂νh

β
µ∂

α∂νhµ
α + 2∂β∂µh

β
µ∂

α∂µhν
α

− 4∂µ∂νh∂
α∂µhν

α − 4□hµν∂
α∂µhν

α

+2□hµν∂
µ∂νh+□hµν□hµν + ∂µ∂νh∂

µ∂νh) . (3.1.5)

Novamente, podemos reescrever estes termos por meio do recurso da derivada total,

RµνRµν =
1

4

(
−2hµβ□∂α∂µhβ

α − 2h□∂µ∂νh
µν

+2hµν∂µ∂ν∂α∂βh
αβ + hµν□2hµν + h□2h

)
. (3.1.6)

Usamos a métrica para subir ou descer convenientemente índices tensoriais,

RµνRµν = hµν

(
−1

2
ηνβ∂µ∂α□− 1

2
ηµν∂α∂β□

+
1

2
∂µ∂ν∂α∂β +

1

4
ηµαηνβ□

2 +
1

4
ηµνηαβ□

2

)
hαβ, (3.1.7)

de modo que podemos reescrever a lagrangiana total na forma

L =
1

2
hµνOµν,αβh

αβ, (3.1.8)

onde o operador Oµν,αβ é dado por

Oµν,αβ =
1

2
ηµνηαβ□− ηµν∂α∂β −

1

2
ηµαηνβ□+ ηνα∂β∂µ

+ σ
(
−ηµν∂α∂β□− ηαβ∂µ∂ν□+ ηµνηαβ□

2 + ∂µ∂ν∂α∂β
)

+ γ

(
−1

2
ηνβ∂µ∂α□− 1

2
ηµν∂α∂β□+

1

2
∂µ∂ν∂α∂β +

1

4
ηµαηνβ□

2 +
1

4
ηµνηαβ□

2

)
+

1

α

(
ηµν∂α∂β − ηνβ∂µ∂α − 1

4
ηµνηαβ□

)
. (3.1.9)
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Novamente, surgem termos que necessitam ser simetrizados. Lançamos mão das das eqs.
(2.3.24) - (2.3.26) para obter

Oµν,αβ =
1

2
ηµνηαβ□− 1

2
(ηµν∂α∂β + ηαβ∂µ∂ν)−

1

4
(ηµαηνβ + ηµβηνα)□

+
1

4
(ηνα∂µ∂β + ηµα∂ν∂β + ηνβ∂µ∂α + ηµβ∂ν∂α)

+ σ

[
−1

2
(ηµν∂α∂β + ηαβ∂µ∂ν)□− 1

2
(ηµν∂α∂β + ηαβ∂µ∂ν)□+ ηµνηαβ□

2 + ∂µ∂ν∂α∂β

]
+

γ

2

[
−1

4
(ηνα∂µ∂β + ηµα∂ν∂β + ηνβ∂µ∂α + ηµβ∂ν∂α)□

− 1

2
(ηµν∂α∂β + ηαβ∂µ∂ν)□+ ∂µ∂ν∂α∂β +

1

4
(ηµαηνβ + ηµβηνα)□

2

+
1

2
ηµνηαβ□

2

]
+

1

α

[
1

2
(ηµν∂α∂β + ηαβ∂µ∂ν)

−1

4
(ηνα∂µ∂β + ηµα∂ν∂β + ηνβ∂µ∂α + ηµβ∂ν∂α)−

1

4
ηµνηαβ□

]
. (3.1.10)

O operador (3.1.10) pode ser expresso em termos dos projetores de Barnes-Rivers (2.2.8-2.2.12)
usando-se relações do tipo (2.3.31-2.3.34). Encontramos:

Oµν,αβ =
1

2

(
3P (0−θ) + P (0−ω) +

√
3P (0−θω)

)
□− 1

2

(
2P (0−ω) +

√
3P (0−θω)

)
□

− 1

2

(
P (0−θ) + P (0−ω) + P (1) + P (2)

)
□+

1

2

(
P (1) + 2P (0−ω)

)
□

+ σ

[
−1

2

(
2P (0−ω) +

√
3P (0−θω)

)
□2 − 1

2

(
2P (0−ω) +

√
3P (0−θω)

)
□2

+
(
3P (0−θ) + P (0−ω) +

√
3P (0−θω)

)
□2 +□2P (0−ω)

]
γ

2

[
−1

2

(
P (1) + 2P (0−ω)

)
□2 − 1

2

(
2P (0−ω) +

√
3P (0−θω)

)
+□2P (0−ω) +

1

2

(
P (0−θ) + P (0−ω) + P (1) + P (2)

)
□2

+
1

2

(
3P (0−θ) + P (0−ω) +

√
3P (0−θω)

)
□2

]
+

1

α

[
1

2

(
2P (0−ω) +

√
3P (0−θω)

)
− 1

2

(
P (1) + 2P (0−ω)

)
−1

4

(
3P (0−θ) + P (0−ω) +

√
3P (0−θω)

)]
□. (3.1.11)

Agrupando os termos semelhantes e fazendo as simpli�cações cabíveis, resulta

Oµν,αβ =

[
(4α− 3)□+ 4α (3σ + γ)□2

4α

]
P (0−θ) − □

4α
P (0−ω)

− □
2α

P (1) −
(
2□− γ□2

4

)
P (2) −

√
3□
4α

P (0−θω). (3.1.12)
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Assim, o propagador para a teoria gravitacional quadrática dada na lagrangiana (3.1.1)

O−1
µν,αβ = −2α

□
P (1) − 4

2□− γ□2
P (2) − 4α

(3σ + γ)□3 +□2

[
− □
4α

P (0−θ)

+
(4α− 3)□+ 4α (3σ + γ)□2

4α
P (0−ω) −

√
3□
4α

P (0−θω)

]
, (3.1.13)

que pode ser reescrito como

O−1
µν,αβ = −2α

□
P (1) − 4

2□− γ□2
P (2) − 4α

□
P (0−ω)

+
1

(3σ + γ)□2 +□

(
P (0−θ) + 3P (0−ω) +

√
3P (0−θω)

)
. (3.1.14)

Escrevemos também o propagador na forma de Feynman no espaço dos momentos

∆µν,αβ = iO−1
µν,αβ, (3.1.15)

∆µν,αβ =
i

p2

[
2αP

(1)
µν,αβ +

4

2 + γp2
P

(2)
µν,αβ + 4αP

(0−ω)
µν,αβ

+
1

(3σ + γ) p2 − 1

(
P

(0−θ)
µν,αβ + 3P

(0−ω)
µν,αβ +

√
3P

(0−θω)
µν,αβ

)]
, (3.1.16)

cujos polos são

p2 = 0, (3.1.17)

2 + γp2 = 0, (3.1.18)

(3σ + γ) p2 − 1 = 0. (3.1.19)

Como havíamos mencionado no início desta seção, os novos polos que emergem desta estrutura
estão associados aos termos de altas derivadas. O primeiro polo que surge fornece a seguinte
relação de dispersão

p2 = −m2
1,

p20 − |p|2 = −m2
1,

p0 = ±
√
|p|2 −m2

1, (3.1.20)

onde m2
1 =

2
γ
. A velocidade de grupo associada vale

ug =
|p|√

|p|2 −m2
1

. (3.1.21)

Vemos que ug > 1 para γ > 0, o que implica em violação da causalidade. Podemos ainda
calcular a velocidade de frente de onda (uf )

uf = lim
|p|→∞

p0
|p|

=

√
1− m2

1

|p|2
= 1. (3.1.22)
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Ambas as condições ug ≤ 1 e uf ≤ 1 são necessárias para assegurar a a causalidade do modo
propagante. Logo, para esse modo massivo ser compatível com os requisitos da causalidade,
deve valer γ < 0.

Para o segundo polo, temos a seguinte relação de dispersão

p2 = m2
2,

p20 = |p|2 +m2
2,

p0 = ±
√

|p|2 +m2
2 (3.1.23)

onde m2
2 =

1
(3σ+γ)

, que fornece velocidade de grupo subluminal:

ug =
|p|√

|p|2 +m2
2

< 1. (3.1.24)

Neste caso, a velocidade de grupo é subluminal, sempre que (3σ + γ) > 0. Em resumo, para
assegurar que os modos massivos dessa teoria sejam causais, deve valer:

γ < 0, (3.1.25)

3σ + γ > 0. (3.1.26)

3.2 Unitariedade tree-level

Para analisar a consistência deste modelo, faremos a análise por meio do mecanismo de sa-
turação do propagador de Feynman com correntes externas. Isso nos permite encontrar uma
expressão que forneça a norma das excitações associadas a cada uma das relações de dispersão,
a unitariedade é assegurada quando a norma das excitações de todos os estados é positiva. Po-
demos identi�car a norma dessas excitações observando o sinal da parte imaginária da saturação
do propagador dada por

SP = JµνRes [∆µν,αβ] J
αβ, (3.2.1)

onde Jµν é um tensor simétrico que descreve uma corrente externa conservada pµJ
µν = 0.

Uma vez observado que a corrente externa é conservada, nem todos os projetores terão
saturação não-nula, isso só ocorrerá nos termos não proporcionais a ωµν . Assim, como já
obtido, teremos

JµνP
(2)
µν,αβJ

αβ = JαβJ
αβ − 1

3
(Jα

α)
2 , (3.2.2)

JµνP
(0−θ)
µν,αβJ

αβ =
1

3
(Jα

α)
2 . (3.2.3)

Usando o propagador de Feynman (3.1.16), podemos escrever o propagador saturado por cor-
rentes conservadas como sendo

SP = iRes

[
1

p2

(
2m2

1

JαβJ
αβ − 1

3
(Jα

α)
2

p2 +m2
1

+
m2

2

3

(Jα
α)

2

p2 −m2
2

)]
. (3.2.4)

Devemos então avaliar o resíduo da saturação nos dois termos e em cada um dos polos de
interesse. Assim, o resíduo para o polo p2 = 0 é

Res|p2=0 = 2

(
JαβJ

αβ − 1

3
(Jα

α)
2

)
− 1

3
(Jα

α)
2 ,

= 2JαβJ
αβ − (Jα

α)
2 .
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Retomando o resultado da eq. (2.4.11) , temos

Res|p2=0 =
2m2

1

m2
1

[
2

3

(
papcJca

|p|2
+

1

2
Jaa

)2

− 2
(pcJca)

2

|p|
+ (Jca)

2 − 1

2
(Jaa)

2

]
,

=

(
papcJca

|p|2
+ Jaa

)2

+ 2 (Jca)
2 − 4

(pcJca)
2

|p|
− 2 (Jaa)

2 , (3.2.5)

que é idêntico ao resultado obtido para a saturação dentro da teoria de Einstein-Hilbert. Po-
demos então concluir que este modo é unitário. Avaliamos o segundo polo p2 +m2

1 = 0,

Res|p2+m2
1=0 = −2

(
JαβJ

αβ − 1

3
(Jα

α)
2

)
. (3.2.6)

Somamos e subtraímos o termo 1
3
(Jα

α)
2, a �m de obter:

Res|p2+m2
1=0 = −2

(
JαβJ

αβ − 1

2
(Jα

α)
2

)
− 1

3
(Jα

α)
2 ,

que implica em

Res|p2+m2
1=0 = −

( papcJca

|p|2 −m2
1

+ Jaa

)2

+ 2 (Jca)
2 − 4

(pcJca)
2√

|p|2 −m2
1

− 2 (Jaa)
2

−1

3

(
papcJca

|p|2 −m2
1

− Jaa

)2

,

(3.2.7)
onde usamos

(Jα
α)

2 =

(
papcJca

p20
− Jaa

)2

.

Observe que neste caso conseguimos escrever o resíduo do propagador em termos de duas
parcelas positivas, precedidas de sinais negativos indicando que esse modo é não unitário.
Finalmente, para p2 −m2

2 = 0 :

Res|p2−m2
2=0 =

1

3
(Jα

α)
2 , (3.2.8)

Res|p2−m2
2=0 =

1

3

(
papcJca

|p|2 +m2
2

− Jaa

)2

, (3.2.9)

que é um termo claramente positivo, implicando na unitariedade do modo. Como pode ser
observado nos resultados acima, alguns modos são provêm excitações com norma negativa
incorrendo na conclusão de a teoria de gravitação quadrática ser não-unitária, tal a�rmação
está de acordo com [17] .

3.3 Propagador para gravitação de Chern-Simons

A gravitação de Chern-Simons foi introduzida inicialmente por Giddings et. al em 1984 [20],
como uma preparação para o estudo de modelos de gravitação quântica. Neste trabalho, fo-
ram obtidas informações relevantes sobre a estrutura das equações de Einstein em diferentes
situações, e a sua principal conclusão é a seguinte. Em três dimensões, a teoria da relatividade
geral não possui graus de liberdade propagantes, ou seja, ao �ndarmos o cálculo do propagador
encontraremos um polo que não estará associado a qualquer modo de propagação.
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Temos uma problemática semelhante na teoria gravitacional linearizada: a solução das
equações de campo usando a aproximação de campo fraco (weak-�eld) possui solução trivial,
isso indica que não existem ondas gravitacionais em três dimensões.

Aparentemente não possuir graus de liberdade propagantes parece indicar um problema,
mas é justamente esse fato que torna a gravitação de Chern-Simons interessante. Ao se mo-
di�car uma teoria, torna-se relativamente complicado separar os graus de liberdade dinâmicos
próprios da teoria daqueles advindos de sua modi�cação, enquanto no cenário da gravitação
tridimensional esse problema desaparece por não haver graus de liberdade.

O estudo de teorias gravitacionais em baixas dimensões pode ser realizado por meio do
acoplamento do termo de gravidade de Chern-Simons [15] à lagrangiana de Einstein-Hilbert

L = LE−H + LC−S + LG−F , (3.3.1)

sendo LC−S a lagrangiana de Chern-Simons:

LC−S =
1

2τ
ϵλµνΓρ

κλ

(
∂µΓ

κ
ρν +

2

3
Γκ

γµΓ
γ
ρν

)
, (3.3.2)

onde τ é uma constante com dimensão de massa 1.

3.3.1 Extensão da base de Barnes-Rivers

A inserção do termo de Chern-Simons torna a base de Barnes-Rivers insu�ciente para o cálculo
do propagador, ou seja, deixamos de ter uma álgebra fechada para os operadores de projeção
de spin em (2+1) dimensões. Assim, surge a necessidade de estendê-la a �m de tornar possível
o cálculo do propagador. Nesse intuito, vamos escrever a lagrangiana de Chern-Simons na sua
forma bilinear e então extrair o novo operador que irá completar a base.

A forma linearizada da lagrangiana (3.3.2) só terá contribuições da primeira parcela, por
ser é quadrática no campo hµν , enquanto a terceira parcela é cúbica no símbolo de Christo�el
e, consequentemente em hµν . O termo de interesse é

LC−S =
1

2τ
ϵλµνΓρ

κλ∂µΓ
κ
ρν . (3.3.3)

Usando a forma linearizada do Símbolo de Christo�el, temos

LC−S =
1

8τ
ϵλµνηρϖηκδ (∂κhλϖ + ∂λhκϖ − ∂ϖhλκ) (∂µ∂ρhνδ + ∂µ∂νhρδ − ∂µ∂δhρν) , (3.3.4)

desenvolvendo e desprezando as parcelas com derivadas sucessivas em µ e ν, (que são nulas por
causa do símbolo de Levi-Civita), encontramos:

LC−S =
1

8τ
ϵλµν

[(
∂δhρ

λ∂µ∂ρhνδ − ∂δhρ
λ∂µ∂δhρν

)
+
(
∂λh

δρ∂µ∂ρhνδ − ∂λh
δρ∂µ∂δhρν

)
−
(
∂ρhδ

λ∂µ∂ρhνδ − ∂ρhδ
λ∂µ∂δhρν

)]
.

Observe que o segundo termo entre parênteses se anula por uma simples rede�nição nos índices
contraídos e que as parcelas restantes se somam pelo mesmo motivo, de modo que obtemos:

LC−S =
1

4τ
ϵλµν

(
∂δhρ

λ∂µ∂ρhνδ − ∂δhρ
λ∂µ∂δhρν

)
. (3.3.5)
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Integramos por partes e usamos a métrica para extrair a forma bilinear

LC−S =
1

4τ
ϵλµνh

ρλ∂µ (□ηρδ − ∂ρ∂δ)h
δν , (3.3.6)

que pode ser expressa em termos do projetor transversal:

LC−S =
1

4τ
hρλ□∂µϵλµνθρδh

δν . (3.3.7)

Note que a expressão acima não está simetrizada, o processo de simetrização ocorre de acordo
com os procedimentos já estudados, fornecendo:

LC−S =
1

4τ
hρλ□∂µ

(
ϵλµνθρδ + ϵδµνθρλ + ϵρµδθνλ + ϵρµλθνδ

4

)
hδν , (3.3.8)

ou ainda

LC−S =
1

2
hρλ

(
□
4τ

Sρλ,δν

)
hδν , (3.3.9)

onde
Sρλ,δν =

1

2
(Sλνθρδ + Sδνθρλ + Sρδθνλ + Sρλθνδ) , (3.3.10)

é o novo operador projeção de spin que irá compor a base de Barnes-Rivers. Neste operador,
temos

Sαβ = ∂γϵαγβ, (3.3.11)

que é o mesmo termo de Chern-Simons do eletromagnetismo. Observe ainda que Sρλ,δν possui
as seguintes simetrias

Sρλ,δν = Sλρ,νδ = −Sδν,ρλ.

O sinal negativo na última permutação está relacionado com a própria estrutura antissimétrica
do símbolo de Levi-Civita que compõe o termo de Chern-Simons.

De posse do operador adicional, devemos obter uma álgebra fechada de projetores que
viabilize o cálculo do propagador dessa teoria de�nida em (2+1) dimensões. Para isso, vamos
calcular as contrações não nulas entre Sµν,αβ e a base de Barnes-Rivers, que em (2+1) dimensões
torna-se

P
(1)
µν,κλ =

1

2
(θµκωνλ + θµλωνκ + θνκωµλ + θνλωµκ) , (3.3.12)

P
(2)
µν,κλ =

1

2
(θµκθνλ + θµλθνκ − θµνθκλ) , (3.3.13)

P
(0−θ)
µν,κλ =

1

2
θµνθκλ, (3.3.14)

P
(0−ω)
µν,κλ = ωµνωκλ, (3.3.15)

P
(0−θω)
µν,κλ =

1√
2
(θµνωκλ + θκλωµν) , (3.3.16)

Sµν,κλ =
1

2
(Sµκθνλ + Sµλθνκ + Sνκθµλ + Sνλθµκ) . (3.3.17)

Em (3.3.12) o fator 1/2 já era esperado, a�nal o cenário tridimensional não afeta este projetor
bem como (3.3.15). Já em P

(2)
µν,κλ, P

(0−θ)
µν,κλ e P

(0−θω)
µν,κλ a história é diferente. Se olharmos para a

de�nição dos operadores de Barnes-Rivers em D dimensões (2.2.1-2.2.5), podemos notar que a
dimensão do espaço-tempo abordado altera a forma destes projetores.
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Como já discutido, a obtenção do propagador requer o cálculo das contrações dos operadores
que compõem a álgebra. Neste sentido, devemos calcular as contrações que envolvem Sµν,κλ.
A�rmamos que apenas duas serão não nulas, a primeira delas é:

Sµν,κλP
(2)κλ

,αβ =
∂σ

2
(ϵµσκθνλ + ϵµσλθνκ + ϵνσκθµλ + ϵνσλθµκ)×

1

2

(
θκαθ

λ
β + θλαθ

κ
β − θαβθ

κλ
)
,

(3.3.18)

=
∂σ

4
(ϵµσκθνλ + ϵµσλθνκ + ϵνσκθµλ + ϵνσλθµκ)

(
θκαθ

λ
β + θλαθ

κ
β

)
.

Desenvolvendo o produto e agrupando os termos semelhantes, resulta

Sµν,κλP
(2)κλ

,αβ =
∂σ

2

(
ϵµσκθνβθ

κ
α + ϵµσλθναθ

λ
β + ϵνσκθµβθ

κ
α + ϵνσλθµαθ

λ
β

)
, (3.3.19)

onde reescrevemos as parcelas de cada uma das parcelas de (3.3.19) usando

∂σϵµσκθνβθ
κ
α = ∂σϵµσκθνβ

(
δκα − ∂κ∂α

□

)
= ∂σϵµσαθνβ. (3.3.20)

Assim,

Sµν,κλP
(2)κλ

,αβ =
∂σ

2
(ϵµσαθνβ + ϵµσβθνα + ϵνσαθµβ + ϵνσβθµα) = Sµν,αβ. (3.3.21)

A outra contração não nula é apresentada a seguir (detalhes no apêndice D):

Sµν,κλS
κλ

,αβ = −4□P
(2)
µν,αβ (3.3.22)

Sµν,κλS
κλ

,αβ = −2□
(
P (0−θ) + P (2)

)
+□

(
2P (0−θ) − 2P (2)

)
= −4□P (2). (3.3.23)

Note que o processo de calcular as contrações entre os operadores de Barnes-Rivers e Sµν,αβ não
conduziu a uma estrutura nova, por exemplo outras combinações entre Sµν e θµν ou com ωµν .
Isso signi�ca que a álgebra está completa apenas com a introdução de Sµν,αβ. É importante
fazer esse comentário porque caso surgisse termos diferentes dos já conhecidos, seria necessário
a inclusão dessas novas estruturas como operadores independentes e a repetição do cálculo das
contrações até que isso não mais ocorresse. Finalmente, completamos a tabela com a álgebra
dos operadores de Barnes-Rivers estendida para a gravitação de Chern-Simons, exibida na
tabela (3.1).

3.3.2 Cálculo do propagador do gráviton em (2+1) dimensões

Após a obtenção da base a ser utilizada num cenário em (2+1) dimensões, vamos implementar
o algoritmo já estudado no capítulo anterior. Desse modo, escrevemos os operadores Oµν,αβ e
O−1

µν,αβ como uma combinação linear dos projetores (3.3.12-3.3.17), ou seja:

Oµν,αβ = a1P
(1) + a2P

(2) + a3P
(0−θ) + a4P

(0−ω) + a5P
(0−θω) + a6S, (3.3.24)

e
O−1

µν,αβ = b1P
(1) + b2P

(2) + b3P
(0−θ) + b4P

(0−ω) + b5P
(0−θω) + b6S. (3.3.25)
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P (1)κλ
,αβ P (2)κλ

,αβ P (0−θ)κλ
,αβ P (0−ω)κλ

,αβ P (0−θω)κλ
,αβ Sκλ

,αβ

P
(1)
µν,κλ P

(1)
µν,αβ 0 0 0 0 0

P
(2)
µν,κλ 0 P

(2)
µν,αβ 0 0 0 Pµν,αβ

P
(0−θ)
µν,κλ 0 0 P

(0−θ)
µν,αβ 0

1√
2
θµνωαβ 0

P
(0−ω)
µν,κλ 0 0 0 P

(0−ω)
µν,αβ

1√
2
ωµνθαβ 0

P
(0−θω)
µν,κλ 0 0

1√
2
θµνωαβ

1√
2
ωµνθαβ P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ 0

Sµν,κλ 0 Sµν,αβ 0 0 0 −4□P
(2)
µν,αβ

Tabela 3.1: Álgebra dos operadores de Barnes-Rivers estendida

Seguindo o mesmo procedimento, vamos obter a forma geral do propagador do gráviton em
(2+1) dimensões. A contração dos operadores (3.3.24) e (3.3.25) gera a identidade

I =
(
a1P

(1) + a2P
(2) + a3P

(0−θ) + a4P
(0−ω) + a5P

(0−θω) + a6S
)
×(

b1P
(1) + b2P

(2) + b3P
(0−θ) + b4P

(0−ω) + b5P
(0−θω) + b6S

)
.

Desenvolvendo e usando os dados da tabela (3.1), encontramos

I = a3

(
b3P

(0−θ) +
1√
2
b5P

(θω)

)
+ a1b1P

(1) + a2b2P
(2) + a4

(
b4P

(0−ω) +
1√
2
b5P

(ωθ)

)
+ a5

[
1√
2
b3P

(ωθ) +
1√
2
b4P

(θω) + b5
(
P (0−θ) + P (0−ω)

)]
+ (a2b6 + a6b2)S − 4a6b6□P (2).

Agrupando os termos semelhantes e escrevendo a identidade como (2.2.30), temos:

P
(1)
µν,αβ + P

(2)
µν,αβ + P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ = (a3b3 + a5b5)P

(0−θ) + a1b1P
(1) + (a2b2 − 4a6b6□)P (2)

+ (a4b4 + a5b5)P
(0−ω) +

1√
2
(a3b5 + a5b4)P

(θω)

+
1√
2
(a4b5 + a5b3)P

(ωθ) + (a2b6 + a6b2)S.

Ao compararmos os coe�cientes, obtemos o seguinte sistema de equações

a3b3 + a5b5 = 1, (3.3.26)

a1b1 = 1, (3.3.27)

a2b2 − 4a6b6□ = 1, (3.3.28)

a4b4 + a5b5 = 1, (3.3.29)

a3b5 + a5b4 = 0, (3.3.30)

a4b5 + a5b3 = 0, (3.3.31)

a2b6 + a6b2 = 0. (3.3.32)

Isolando b6 em (3.3.32) e substituindo em (3.3.28), encontramos

b2 =
a2

a22 + 4a26□
. (3.3.33)
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Substituindo o valor obtido para b2 em (3.3.32), resulta

b6 = − a6
a22 + 4a26□

. (3.3.34)

A solução total do sistema é dada a seguir:

b1 =
1

a1
, b2 =

a2
a22 + 4a26□

, b3 = − a4
a25 − a3a4

, (3.3.35)

b4 = − a3
a25 − a3a4

, b5 =
a5

a25 − a3a4
, b6 = − a6

a22 + 4a26□
. (3.3.36)

Portanto, a forma geral do propagador do gráviton em (2+1) dimensões é proporcional à es-
trutura,

O−1
µν,αβ =

1

a1
P (1) − 1

a25 − a3a4

(
a4P

(0−θ) + a3P
(0−ω) − a5P

(0−θω)
)
+

1

a22 + 4a26□

(
a2P

(2) − a6S
)
.

(3.3.37)
Precisamos agora saber quem sçao os coe�cientes ai que caracterizam a lagrangiana (3.3.1).
Lembramos que a lagrangiana de Einstein-Hilbert é a mesma em (2+1) dimensões. Logo,
podemos �aproveitar� o resultado (2.3.36), que representa o operador quadrático associado ao
setor de Einstein-Hilbert. Também temos que adicionar a contribuição do termo de Chern-
Simons, dado na eq. (3.3.9). Escrevemos assim:

Oµν,αβ =
1

2

(
2P (0−θ) + P (0−ω) +

√
2P (0−θω)

)
□− 1

2

(
2P (0−ω) +

√
2P (0−θω)

)
□

− 1

2

(
P (0−θ) + P (0−ω) + P (1) + P (2)

)
□+

1

2

(
P (1) + 2P (0−ω)

)
□

+
1

α

[
1

2

(
2P (0−ω) +

√
2P (0−θω)

)
− 1

2

(
P (1) + 2P (0−ω)

)
− 1

4

(
2P (0−θ) + P (0−ω) +

√
2P (0−θω)

)]
□+

□
4τ

S.

Agrupando os termos semelhantes, temos

Oµν,αβ =

(
α− 1

2α

)
□P (0−θ) − □

2α
P (1) − □

2
P (2) − □

4α
P (0−ω) +

√
2□
4α

P (0−θω) +
□
4τ

S. (3.3.38)

Por meio desse procedimento, encontramos

a1 = − □
2α

, a2 = −□
2
, a3 =

(
α− 1

2α

)
□, a4 = − □

4α
, a5 =

√
2□
4α

e a6 =
□
4τ

, (3.3.39)

o que permite escrever os coe�cientes bi a seguir

b1 = −2α

□
, b2 = − 2τ 2

τ 2□− 4□2
, b3 =

2

□
,

b4 =
4

□
(1− α) , b5 =

2

□
, e b6 = − τ

τ 2□− 4□2
.
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Podemos então escrever explicitamente o propagador do gráviton (no espaço dos momentos):

∆µν,αβ = iO−1
µν,αβ =

i

p2

{
2αP

(1)
µν,αβ + 4

[
(α− 1)P

(0−ω)
µν,αβ − 1

2

(
P

(0−θ)
µν,αβ +

√
2P

(0−θω)
µν,αβ

)]
+

2τ 2

τ 2 − 4p2

(
P

(2)
µν,αβ −

1

2τ
Sµν,αβ

)}
. (3.3.40)

Além do polo usual (p2 = 0), temos um outro que surge da própria estrutura do espaço-tempo
de (2+1) dimensões, que fornece a seguinte relação de dispersão

τ 2 − 4p2 = 0. (3.3.41)

Ao isolar p0 no primeiro membro, temos

p0 = ±
√

|p|2 + τ 2

4
, (3.3.42)

que é a relação de dispersão de um gráviton massivo, e consistente com os requisitos de causa-
lidade. De fato,

ug =
|p|√

|p|2 + τ2

4

< 1,

é a velocidade de grupo obtida para esse polo.

3.3.3 Unitariedade tree-level

Neste momento vamos analisar a unitariedade das excitações do propagador (3.3.40). Antes de
iniciarmos tal discussão, devemos saber se o projetor Sµν,αβ contribuirá ou não para a saturação,
temos

JµνSµν,αβJ
αβ =

1

2
Jµν (Sµαθνβ + Sµβθνα + Sναθµβ + Sνβθµα) J

αβ,

=
1

2
Jµν (Sµαηνβ + Sµβηνα + Sναηµβ + Sνβηµα) J

αβ,

=
1

2
(SµαJ

µ
β + SµβJ

µ
α + SναJ

ν
β + SνβJ

ν
α) J

αβ,

= (SµαJ
µ
β + SµβJ

µ
α) J

αβ,

= 2SµαJ
µ
βJ

αβ,

note que

SµαJ
µ
βJ

αβ = −SαµJ
αβJµ

β,

= −SαµJ
α
βJ

µβ,

= −SµαJ
µ
βJ

αβ,

logo
SµαJ

µ
βJ

αβ = 0, (3.3.43)

e assim a saturação de Pµν,αβ por correntes externas não deverá contribuir,

JµνSµν,αβJ
αβ = 0. (3.3.44)
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Importante observar também que os resultados para a saturação dos outros dois projetores deve
ser corrigido para o presente cenário,

JµνP
(2)
µν,αβJ

αβ = JαβJ
αβ − 1

2
(Jα

α)
2 , (3.3.45)

JµνP
(0−θ)
µν,αβJ

αβ =
1

2
(Jα

α)
2 . (3.3.46)

Usando o propagador (3.3.40), temos

SP = JµνRes
[
iO−1

µν,αβ

]
Jαβ,

= −iRes

[
2

p2

(
τ 2

4

JαβJ
αβ − 1

2
(Jα

α)
2

p2 − τ2

4

+
1

2
(Jα

α)
2

)]
.

O resíduo do primeiro termo em p2 = 0 será dado por:

Res|p2=0 = −2

[
JαβJ

αβ +
1

2
(Jα

α)
2

]
,

= −

[(
papcJca

|p|2
+ Jaa

)2

+ 2 (Jca)
2 − 4

(pcJca)
2

|p|
− 2 (Jaa)

2

]
,

que ao compararmos com o resultado (2.4.17), implica em uma contribuição de norma negativa.
Portanto, tal modo é não unitário. Para o polo p2 − τ2

4
= 0, temos

Res|
p2− τ2

4
=0

= 2

(
JαβJ

αβ − 1

2
(Jα

α)
2

)
=

(
papcJca

|p|2 + τ2

4

+ Jaa

)2

+ 2 (Jca)
2 − 4

(pcJca)
2√

|p|2 + τ2

4

− 2 (Jaa)
2 . (3.3.47)

Este segundo modo, ao contrário do anterior, está associado com excitações de norma positiva
e isso nos permite chegar a conclusão de que o mesmo é unitário. Entretanto, pelo fato de
um dos modos violar a unitariedade, a gravitação Einstein-Chern-Simons como um todo não é
unitária.
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CAPÍTULO 4
Gravitação de Einstein-Hilbert modi�cada
por termo de violação da simetria de
Lorentz.

Nos capítulos precedentes, revisitamos o cálculo do propagador do gráviton em cenários bem
distintos. Vamos agora examinar a obtenção do propagador do gráviton em uma teoria de
campo em que há violação da simetria de Lorentz, ou seja, um teoria de campo além do
Modelo Padrão (MP) [22].

O MP é uma teoria que se propõe a descrever tanto as interações fundamentais forte, fraca
e eletromagnética, que atuam entre as partículas elementares (férmions e bósons). Apesar de
obter grande sucesso, como a comprovação da existência do Bóson de Higgs, não podemos
nos referir ao MP como uma teoria completa no contexto da física de partículas porque ainda
existem algumas questões em aberto, tais como: onde a gravidade se encaixa no MP? Qual a
origem da massa dos neutrinos? Por que existe assimetria entre matéria e antimatéria? Qual a
origem e essência da matéria escura? Essas pergunta ainda não possuem respostas, sugerindo a
possível existência de teorias para as interações fundamentais que vão além do Modelo Padrão.
Entre estas, situa-se o Modelo Padrão Estendido (MPE) [23-32] como uma possibilidade.

O MPE, por ser uma extensão do MP, contém todas as interações por este descritas, in-
cluindo novos termos de interação em cada um dos seus setores. Esses novos termos que violam
a simetria de Lorentz e CPT (no referencial das partículas), são compostos por contrações ten-
soriais entre os campos físicos da teoria e campos de fundo (�xos), que carregam a informação
da violação da simetria de Lorentz [23-33]. A ideia por trás dos mecanismos de violação de
simetria é justamente a busca de uma teoria mais fundamental, válida em altíssimas energias
(na escala de Planck). Se a simetria de Lorentz é violada espontaneamente em altas energias,
gera-se quantidades esperadas no vácuo não-nulas, que funcionam como efeito remanescente
da quebra. Não poderíamos deixar de mencionar que uma teoria que viola a simetria CPT,
inevitavelmente irá violar a simetria de Lorentz [34]. Em contrapartida, preservar a simetria
CPT não nos dá garantia alguma de que não ocorra violação da simetria de Lorentz fora do
cone de luz, ou seja, pode ser que aconteça, mas sem qualquer conexão causal.

O processo da quebra de simetria pode ocorrer de duas principais formas: espontânea ou
explícita [35]. A principal diferença entre esses dois processos reside na forma que os termos de
violação surgem. Na primeira eles se originam por meio do mecanismo de quebra espontânea
(como o mecanismo de Higgs). Na segunda os termos de violação se acoplam diretamente
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aos campos físicos na lagrangiana de alguma teoria, ou seja, os campos de fundo �xos são
introduzidos à mão �forçando� a violação da simetria de Lorentz. Este trabalho contempla o
caso da violação espontânea de simetria no setor gravitacional, sendo estudado por meio de
um formalismo que mantenha a invariância sob transformação de coordenadas no referencial
do observador.

Desde que as teorias de campo que violam a simetria de Lorentz foram sugeridas como uma
extensão ao MP vigente, teóricos em várias partes do mundo se interessaram em investigar a
fundo as implicações da quebra de simetria nos diferentes setores do MP e compará-los com os
resultados já conhecidos.

Em 2004 [41], Kostelecky propôs um modelo teórico no qual os termos de violação de Lorentz
foram introduzidos por meio de tetradas e conexões de spin dentro da geometria de Riemann-
Cartan provida de torsão e dinâmica de curvatura. No ano seguinte, um novo estudo [42] foi
desenvolvido usando o formalismo apresentado no trabalho do ano anterior. Neste artigo, foi
analisado a conexão entre os modos de Nambu-Goldstone e a violação espontânea de simetria
de Lorentz e difeomor�smo. Este capítulo traz alguns resultados obtidos em [43], que foi o
precursor de outras investigações que abordaram essa questão [43-52], os resultados obtidos de
tais investigações sugerem interessantes direcionamentos para mais desenvolvimentos teóricos
e testes experimentais. Para exempli�car este fato, podemos citar o trabalho de A. Cavalcante
et.al [53], onde foi obtida uma solução do tipo Schwarszchild para o mesmo modelo de gravidade
abordado nesse capítulo, podendo ser testada por meio da precessão do periélio de planetas,
curvatura da luz e efeitos de atraso temporal.

4.1 Modelo teórico

A investigação do setor gravitacional do MPE tem sido amplamente realizada em diversos
trabalhos recentes [41-53]. O foco dessa seção é o estudo do propagador do gráviton no contexto
de um modelo gravitacional que inclui termos de violação de Lorentz. Neste sentido, vamos
considerar o chamado modelo �bumblebee�, constituído por um campo vetorial no formalismo
da relatividade geral para uma teoria de campo na presença do termos de violação da simetria
de Lorentz.

Como descrito anteriormente, sob a ação de um potencial apropriado, o campo bumblebee
Bµ adquire um valor esperado de vácuo não nulo bµ, o que induz a violação espontânea da
simetria de Lorentz no setor gravitacional do MPE. A ação total deste modelo consiste na ação
de Einstein-Hilbert somada à ação do termo de violação de simetria de Lorentz, ou seja,

S = SEH + SLV , (4.1.1)

onde LEH é dada na eq. (2.3.11) e LLV representa as contribuições da violação de Lorentz,
dada a seguir:

SLV =

∫
d4x

√
−g

2

κ2

(
uR + sµνRµν + tµναβRµναβ

)
. (4.1.2)

Aqui, u representa um escalar, enquanto sµν e tµναβ são tensores adimensionais que contêm os
coe�cientes de violação da simetria de Lorentz, possuindo as mesmas simetrias dos tensores de
Ricci e Riemann. Por �m, κ2 é a conhecida constante de acoplamento gravitacional. Podemos
salientar também que estes tensores possuem traço-nulo, uma vez que sµµ e tµνµν contribuem
na lagrangiana com termos proporcionais a R, pois:

sµνRµν = sµνR
ν
µ = 2s0iR

i
0 + sijR

j
i︸ ︷︷ ︸

com i ̸=j

+ sµµR
µ
µ. (4.1.3)
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Dessa forma, o traço de sµν contribui na ação com termo proporcional a R, que pode ser
absorvida no termo uR. O mesmo raciocínio se aplica ao traço do tensor tµναβ. Formalmente,
podemos tomar tµναβ = 0, e parametrizar as quantidades u e sµν em termos de um campo
vetorial Bµ. Escrevemos assim:

u =
1

4
ξBαBα, (4.1.4)

sµν = ξ

(
BµBν − 1

4
gµνBαBα

)
, (4.1.5)

onde ξ tem dimensão de massa [ξ] = −2, o que mantém adimensionais u e sµν , conforme [41].
O campo vetorial Bµ é chamado de campo �bumblebee�. A constante ξ é quem estabelece o
acoplamento entre o campo bumblebee e o tensor de curvatura do espaço-tempo. A dinâmica
do campo bumblebee descrita por uma ação que congrega os acoplamentos (4.1.4) e (4.1.5) e o
termo dinâmico:

SB =

∫
d4x

√
−g

[
−1

4
BµνB

µν +
2ξ

κ2
BµBνRµν − V

(
BµB

µ ∓ b2
)]

, (4.1.6)

onde Bµν é o tensor antissimétrico que faz o papel de ��eld-strength� do campo bumblebee,

Bµν = ∂µBν − ∂νBµ. (4.1.7)

Na ação (4.1.6) temos ainda o potencial,

V =
λ

2

(
BµBµ ∓ b2

)2
, (4.1.8)

causador da quebra espontânea da simetria de difeomor�smo associada à quebra espontânea
de�agrada no setor do campo bumblebee. Aqui, λ é adimensional e b2 é uma constante positiva
relacionada ao valor esperado de vácuo não-nulo do campo bumblebee.

É importante ainda mencionar que a ação (4.1.1) deixa de ser invariante sob a transformação,

hµν (x) → hµν (x)− ∂νξµ (x)− ∂µξν (x) , (4.1.9)

que se deve à presença do campo bumblebee neste modelo.

4.1.1 Linearização da lagrangiana LLV

A �m de estudar os efeitos da presença do campo bumblebee sobre o propagador do gráviton,
vamos buscar uma forma linearizada e quadrática em hµν da lagrangiana LLV . Partindo da eq.
[4.1.2] com tµναβ = 0, resta:

LLV = σ
√
−gBµBνRµν , (4.1.10)

sendo σ = 2ξ/κ2. O cálculo do propagador, como visto nos capítulos anteriores, requer uma
expansão da lagrangiana em segunda ordem nos campos propagantes. Assim, devemos escrever
(4.1.10) como função de termos em segunda ordem de hµν . Podemos executar essa tarefa
escrevendo as excitações dos campos em torno dos valores esperados não-nulos (bµ) através de
pequenas �utuações (hµν e B̃µ), como dado a seguir:

gµν = ηµν + κhµν , (4.1.11)

Bµ = bµ + B̃µ, (4.1.12)

Bµ = bµ + B̃µ − κbνh
µν . (4.1.13)
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Note que a única barreira que nos impede de escrever diretamente a expansão da eq. (4.1.10)
em segunda ordem é o desconhecimento de uma expressão para B̃µ e, para determiná-la, vamos
obter as equações de movimento a partir da ação

SB =

∫
d4x

√
−g

[
−1

4
BµνB

µν +
2ξ

κ2
BµBνRµν − V

(
BµB

µ ∓ b2
)]

, (4.1.14)

e resolvê-la para B̃µ com o potencial especí�co

V =
λ

2

(
BµBµ ∓ b2

)2
. (4.1.15)

Usaremos as equações de Euler-Lagrange para o campo bumblebee

∂LB

∂Bµ

− ∂ν

[
∂LB

∂ (∂νBµ)

]
= 0, (4.1.16)

nos mesmos moldes utilizados para um campo vetorial usual. Para a primeira parcela,

∂LB

∂Bµ

=
∂

∂Bµ

[
−1

4
BαβB

αβ + σBαBβRαβ − V
(
BαB

α ∓ b2
)]

, (4.1.17)

encontramos:
∂LB

∂Bµ

= 2σBαR
µα − 2λ

(
BαB

α ∓ b2
)
Bµ. (4.1.18)

A segunda parcela da equação de Euler-Lagrange resume-se a

∂LB

∂ (∂νBµ)
= −1

4

∂

∂ (∂νBµ)

(
BαβB

αβ
)
= −1

4
(−4Bµν) = Bµν , (4.1.19)

logo,

∂ν

[
∂LB

∂ (∂νBµ)

]
= ∂νB

µν . (4.1.20)

Substituindo tais resultados na eq. (4.1.16), obtemos a equação de movimento

2σBαR
µα − 2λ

(
BαB

α ∓ b2
)
Bµ = ∂νB

µν . (4.1.21)

Na equação acima, podemos aplicar a aproximação adotada nas eqs. (4.1.11− 4.1.13) e simpli-
�car os termos para obter:

(□ηµν − ∂µ∂ν − 4λbµbν) B̃
µ = −2λκbνbαbβh

αβ − 2σbαRαν , (4.1.22)

que no espaço dos momentos pode ser lida como(
−p2ηµν + pµpν − 4λbµbν

)
B̃µ = −2λκbνbαbβh

αβ − 2σbαRαν ,

OµνB̃
µ = Jν , (4.1.23)

onde de�nimos,

Oµν = −p2ηµν + pµpν − 4λbµbν , Jν = −2λκbνbαbβh
αβ − 2σbαRαν , (4.1.24)

que satisfaz a identidade
Oµα∆

αν = δνµ, (4.1.25)
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onde δνµ é o delta de Kronecker. A eq. (4.1.23) pode ser solucionada pelo método de Green.
Para tal, a contraímos com o operador inverso de θαν , que satisfaz (4.1.25). Realizando a
contração da eq. (4.1.23) com o operador ∆αν , temos :

∆ανOµνB̃
µ = ∆ανJν , (4.1.26)

B̃α = ∆ανJν . (4.1.27)

A �m de determinar ∆αν , vamos usar o método de projetores tensoriais, expandindo-o na base
de projetores [ηαβ, pαpβ, bαbβ, (pαbβ + pβbα)], ou seja,

∆αβ = a1ηαβ + a2pαpβ + a3bαbβ + a4(pαbβ + pβbα), (4.1.28)

onde a1, a2, a3 e a4 são coe�cientes a serem determinados. Implementando (4.1.28) na eq.
(4.1.25), temos:(

−p2ηµα + pµpα − 4λbµbα
)
[a1δ

α
ν + a2p

αpν + a3b
αbν + a4(p

αbν + pνb
α)] = ηµν . (4.1.29)

Desenvolvendo os produtos e realizando as simpli�cações devidas, resulta:

− p2 [a1ηµν + a2pµpν + a3bµbν + a4(pµbν + pνbµ)]

+
{
a1pµpν + a2p

2pµpν + a3 (b · p) pµbν + a4
[
(p2pµbν + (b · p) pµpν

]}
− 4λ

{
a1bµbν + a2 (b · p) pνbµ + a3b

2bνbµ + a4
[
((b · p) bνbµ + b2pνbµ)

]}
= ηµν .

Agrupamos os termos semelhantes, obtemos o seguinte sistema:

−a1p
2 = 1,

a1 − a2p
2 + a2p

2 + a4 (b · p) = 0,

−a3p
2 − 4λa1 − 4λb2a3 − 4λ (b · p) a4 = 0,

−p2a4 + a3 (b · p) + p2a4 = 0,

−p2a4 − 4λ (b · p) a2 − 4λb2a4 = 0, (4.1.30)

cuja solução conduz aos coe�cientes ai a seguir:

a1 = − 1

p2
, a4 = − a1

(b · p)
=

1

p2 (b · p)
, (4.1.31)

a3 = 0, a2 = −(p2 + 4λb2)

4λ (b · p)
a4 = − (p2 + 4λb2)

4λp2 (b · p)2
. (4.1.32)

Assim, o operador ∆αβ tem a forma,

∆αβ = − 1

p2
ηαβ −

(p2 + 4λb2)

4λp2 (b · p)2
pαpβ +

1

p2 (b · p)
(pαbβ + pβbα). (4.1.33)

Podemos então encontrar a seguinte expressão para B̃µ :

B̃µ =

[
− 1

p2
ηµν − (p2 + 4λb2)

4λp2 (b · p)2
pµpν +

1

p2 (b · p)
(pµbν + pνbµ)

] (
−2λκbνbαbβh

αβ − 2σbαRαν

)
.

(4.1.34)
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Desenvolvendo os produtos e simpli�cando os termos, resulta:

B̃µ =
κpµbαbβh

αβ

2 (b · p)
+

2σbαR
µα

p2
− 2σpµbαbβR

αβ

p2 (b · p)
+

σpµR

4λ (b · p)
− σbµR

p2
+

σb2pµR

p2 (b · p)
. (4.1.35)

Agora vamos retomar a eq. (4.1.10), escrevendo-a como uma expansão em segunda ordem
no campo hµν ,

LLV = σ
√
−gBµBνR

µν = σ

(
1 +

1

2
κh

)
BµBνR

µν . (4.1.36)

Note que não levamos em consideração os termos de segunda ordem na expansão de
√
−g.

Uma vez que o tensor de Ricci fornece contribuições em primeira ordem de hµν ou superior, os
termos em segunda ordem de

√
−g implicariam em contribuições de pelo menos terceira ordem

em hµν . Sendo assim, consideraremos a expansão até a segunda ordem do tensor de Ricci,

LLV = σ

(
1 +

1

2
κh

)(
bµ + B̃µ

)(
bν + B̃ν

) [
Rµν (h) +Rµν

(
h2
)]

,

LLV = σ

[
Rµν (h) +Rµν

(
h2
)
+

1

2
κhRµν (h)

](
bµbν + bµB̃ν + bνB̃µ + B̃µB̃ν

)
+O

(
h3
)
.

(4.1.37)

Simpli�cando essa expressão, resulta:

LLV = σ

[
bµbνR

µν
(
h2
)
+ 2bµB̃νR

µν (h) +
1

2
κhbµbνR

µν (h)

]
+O

(
h3
)
. (4.1.38)

Para �nalizar o processo, basta substituir as expressões já obtidas para B̃ν , R
µν (h) e Rµν (h2),

Rµν = Rµν (h) +Rµν

(
h2
)
+O

(
h3
)

Rµν = −2κ∂[µGγ
γ]ν + 2κ2Gκ

ν[µGα
α]κ +O

(
h3
)
, (4.1.39)

obtidas no apêndice B. A contribuição de primeira ordem em hµν do tensor de Ricci, escrita no
espaço dos momentos é:

Rµν (h) =
κ

2

(
p2hµν + pµpνh− pµp

γhγν − pνp
γhγµ

)
. (4.1.40)

Para a segunda ordem, temos

Rµν

(
h2
)
=

κ2

4
[(pµh

κα + pαhκ
µ − pκhα

µ) (pνhκα + pκhνα − pαhκν)

− pµhpκh
κ
ν + pνhpκh

κ
µ + p2hhµν + 2pµpαh

α
κh

κ
ν

−2pνpαh
α
κh

κ
µ − 2pκpαh

καhµν ] . (4.1.41)

A forma linearizada da lagrangiana LLV pode ser obtida ao substituir as eqs. (4.1.40− 4.1.41)
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na eq. (4.1.38), resultando em:

LLV = ξ

{
p2bµbν (h

µνh+ hµαhν
α)−

1

2
(b · p)2

(
hµνhµν − h2

)
−
[
bµbνpαpβ +

1

4
(bµpν + bνpµ) (bαpβ + bβpα)

]}
hµνhαβ

+
4ξ2

κ2

{[
−2p2bµbν − 2b2pµpν + 2 (b · p) (bµpν + bνpµ)−

p2pµpν
2λ

]
hµνh

+

[
2bµbνpαpβ −

1

4
(bµpν + bνpµ) (bαpβ + bβpα) +

b2pµpνpαpβ
p2

−(b · p) pµpν
p2

(bαpβ + bβpα) +
pµpνpαpβ

4λ

]
hµνhαβ +

[
b2p2 − (b · p)2 + p4

4λ

]
h2

+

[
p2bµbν − (b · p) (bµpν + bνpµ) +

(b · p)2 pµpν
p2

]
hµλhν

λ

}
. (4.1.42)

Se formos comparar a eq. (4.1.42) com a da ref. [22], iremos notar que o último termo da
terceira linha está diferente, isso se justi�ca pelo fato de haver um pequeno �misprint� nesse
artigo. A �m de obter a forma bilinear da lagrangiana (4.1.42), vamos usar a métrica para
escrever convenientemente alguns termos,

LLV = ξhµν

{
p2 (bµbνηαβ + bµbβηαν)−

1

2
(b · p)2 (ηµαηνβ − ηµνηαβ)

−
[
bµbνpαpβ +

1

4
(bµpν + bνpµ) (bαpβ + bβpα)

]}
hαβ

+
4ξ2

κ2
hµν

[
−2p2bµbνηαβ − 2b2pµpνηαβ + 2 (b · p) (bµpν + bνpµ) ηαβ −

p2pµpνηαβ
2λ

+2bµbνpαpβ−
1

4
(bµpν + bνpµ) (bαpβ + bβpα)+

b2pµpνpαpβ
p2

− (b · p) pµpν
p2

(bαpβ + bβpα)+
pµpνpαpβ

4λ

+

(
b2p2 − (b · p)2 + p4

4λ

)
ηµνηαβ + p2bµbαηνβ − (b · p) (bµpα + bαpµ) ηνβ +

(b · p)2 pµpαηνβ
p2

]
hαβ.

(4.1.43)

A seguir faremos a simetrização dessa lagrangiana, no intuito de encontrar os operadores que
surgem da contrbuição dos termos de violação de simetria de Lorentz.

4.1.2 Simetrização da lagrangiana LLV

A extensão da lagrangiana obtida anuncia a di�culdade do próximo passo, que é a sua simetri-
zação. Os termos a serem simetrizados são:

bµbνηαβ =
1

2
(bµbνηαβ + bαbβηµν) =

1

2

(√
3Π̃

(θΛ)
µν,αβ + Π̃

(ωΛ−b)
µν,αβ

)
, (4.1.44)

bµbβηαν =
1

4
(ηανbµbβ + ηβνbµbα + ηµβbαbν + ηµαbβbν) =

1

4

(
2Π̃

(2)
µν,αβ + Π̃

(ωΛ−a)
µν,αβ

)
, (4.1.45)

bµbνpαpβ =
1

2
(bµbνpαpβ + bαbβpµpν) =

p2

2
Π̃

(ωΛ−b)
µν,αβ ,

59



(bµpν + bνpµ) (bαpβ + bβpα) = bµbνpαpβ + bµbαpνpβ + bµbβpνpα + bνbαpµpβ + bνbβpµpα,

= p2Π̃
(ωΛ−a)
µν,αβ . (4.1.46)

Este último não foi exatamente simetrizado, mas apenas reescrito. Continuando,

(bµpν + bνpµ) ηαβ = Σ̃µνηαβ =
1

2

(
Σ̃µνηαβ + Σ̃αβηµν

)
=

1

2

(√
3Π̃

(θΣ)
µν,αβ + Π̃

(ωΣ)
µν,αβ

)
. (4.1.47)

pµpν (bαpβ + bβpα) = p2ωµνΣ̃αβ =
p2

2

(
ωµνΣ̃αβ + ωαβΣ̃µν

)
=

p2

2
Π̃

(ωΣ)
µν,αβ. (4.1.48)

bµbαηβν =
1

4
(ηανbµbβ + ηβνbµbα + ηµβbαbν + ηµαbβbν) =

1

4

(
2Π̃

(2)
µν,αβ + Π̃

(ωΛ−a)
µν,αβ

)
, (4.1.49)

(bµpα + bαpµ) ηνβ = Σ̃µαηνβ =
1

4

(
ηανΣ̃µβ + ηβνΣ̃µα + ηµβΣ̃αν + ηµαΣ̃βν

)
. (4.1.50)

Neste momento, cumpre observar que:

2Π̃
(ωΣ)
µν,αβ = 2ωµνΣ̃αβ + 2ωαβΣ̃µν = 2ωµν (bαpβ + bβpα) + 2ωαβ (bµpν + bνpµ) .

Permutando os índices de ω e Σ̃ convenientemente em todas as parcelas, obtemos:

2Π̃
(ωΣ)
µν,αβ = ωανΣ̃µβ + ωβνΣ̃µα + ωµβΣ̃αν + ωµαΣ̃βν . (4.1.51)

Assim,

(bµpα + bαpµ) ηνβ =
1

2

(
Π̃

(1)
µν,αβ + Π̃

(ωΣ)
µν,αβ

)
. (4.1.52)

Onde de�nimos os projetores que surgem na simetrização da lagrangiana LLV ,

Π̃
(1)
µν,κλ =

θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

2
, (4.1.53)

Π̃
(2)
µν,κλ =

θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ

2
, (4.1.54)

Π̃
(θΣ)
µν,κλ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
, (4.1.55)

Π̃
(θΛ)
µν,κλ =

1√
3
(θµνΛκλ + θκλΛµν) , (4.1.56)

Π̃
(ωΛ−a)
µν,κλ = ωµκΛνλ + ωµλΛνκ + ωνκΛµλ + ωνλΛµκ, (4.1.57)

Π̃
(ωΛ−b)
µν,κλ = ωµνΛκλ + ωκλΛµν , (4.1.58)

Π̃
(ωΣ)
µν,κλ = ωµνΣ̃κλ + ωκλΣ̃µν , (4.1.59)
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onde Σ̃µν = bµpν + bνpµ e Λµν = bµbν . Reescrevemos a lagrangiana (4.1.42) no seguinte formato:

LLV = ξhµν

{
p2
[
1

2

(
Π̃

(θΛ)
µν,αβ + Π̃

(ωΛ−b)
µν,αβ

)
+

1

4

(
2Π̃

(2)
µν,αβ + Π̃

(ωΛ−a)
µν,αβ

)]
− 1

2
(b · p)2

[
P

(0−θ)
µν,αβ + P

(1)
µν,αβ + P

(2)
µν,αβ + P

(0−ω)
µν,αβ −

(
3P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ +

√
3P

(0−θω)
µν,αβ

)]
−p2

(
1

2
Π̃

(ωΛ−b)
µν,αβ +

1

4
Π̃

(ωΛ−a)
µν,αβ

)}
hαβ +

4ξ2

κ2
hµν

[
−p2

(√
3Π̃

(θΛ)
µν,αβ + Π̃

(ωΛ−b)
µν,αβ

)
− b2p2

(
2P

(0−ω)
µν,αβ +

√
3P

(0−θω)
µν,αβ

)
+ (b · p)

(√
3Π̃

(θΣ)
µν,αβ + Π̃

(ωΣ)
µν,αβ

)
− p4

4λ

(
2P

(0−ω)
µν,αβ +

√
3P

(0−θω)
µν,αβ

)
+ p2Π̃

(ωΛ−b)
µν,αβ − 1

4
p2Π̃

(ωΛ−a)
µν,αβ + b2p2P

(0−ω)
µν,αβ − 1

2
(b · p) Π̃(ωΣ)

µν,αβ +
p4

4λ
P

(0−ω)
µν,αβ

+

(
b2p2 − (b · p)2 + p4

4λ

)(
3P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ +

√
3P

(0−θω)
µν,αβ

)
+

p2

4

(
2Π̃

(2)
µν,αβ + Π̃

(ωΛ−a)
µν,αβ

)
−1

2
(b · p)

(
Π̃

(1)
µν,αβ + Π̃

(ωΣ)
µν,αβ

)
+ (b · p)2

(
1

2
P

(1)
µν,αβ + P

(0−ω)
µν,αβ

)]
hαβ. (4.1.60)

Vamos juntar os termos semelhantes e simpli�car para obter o resultado:

LLV =
1

2
hµν

{[
−ξ (b · p)2 + 4ξ2

κ2
(b · p)2

]
P

(1)
µν,αβ − ξ (b · p)2 P (2)

µν,αβ

+

[
2ξ (b · p)2 + 24ξ2

κ2

(
b2p2 − (b · p)2 + p4

4λ

)]
P

(0−θ)
µν,αβ

+

[
√
3ξ (b · p)2 − 8

√
3ξ2

κ2
(b · p)2

]
P

(0−θω)
µν,αβ − 4ξ2

κ2
(b · p) Π̃(1)

µν,αβ +

(
ξp2 +

4ξ2

κ2
p2
)
Π̃

(2)
µν,αβ

+
8
√
3ξ2

κ2
(b · p) Π̃(θΣ)

µν,αβ +

(
√
3ξp2 − 8

√
3ξ2

κ2
p2

)
Π̃

(θΛ)
µν,αβ

}
hαβ. (4.1.61)

Aqui faremos um comentário importante: note que os elementos que compõem a base que
�quadra� a lagrangiana LLV é composta pelos projetores

[
P

(1)
µν,αβ , P

(2)
µν,αβ, P

(0−θ)
µν,αβ , P

(0−θω)
µν,αβ , Π̃(1)

µν,αβ,

Π̃
(2)
µν,αβ, Π̃

(θΣ)
µν,αβ e Π̃

(θΛ)
µν,αβ

]
. No entanto, a �m de compor uma álgebra fechada que permita calcular

o propagador do gráviton de Einstein-Hilbert modi�cado por termos de violação de Lorentz, é
necessário acrescentar mais projetores, de modo que o conjunto total de operadores é exibido

61



a seguir :

Π̃
(1)
µν,κλ =

θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

2
, (4.1.62)

Π̃
(2)
µν,κλ =

θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ

2
, (4.1.63)

Π̃
(θΣ)
µν,κλ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
, (4.1.64)

Π̃
(θΛ)
µν,κλ =

1√
3
(θµνΛκλ + θκλΛµν) , (4.1.65)

Π̃
(ΛΛ)
µν,κλ = ΛµνΛκλ, (4.1.66)

Π̃
(ωΛ−a)
µν,κλ = ωµκΛνλ + ωµλΛνκ + ωνκΛµλ + ωνλΛµκ, (4.1.67)

Π̃
(ωΛ−b)
µν,κλ = ωµνΛκλ + ωκλΛµν , (4.1.68)

Π̃
(ωΣ)
µν,κλ = ωµνΣ̃κλ + ωκλΣ̃µν , (4.1.69)

Π̃
(ΛΣ)
µν,κλ = ΛµνΣ̃κλ + ΛκλΣ̃µν . (4.1.70)

Em outras palavras, ao efetuarmos a contração entre os projetores
[
P

(1)
µν,αβ , P

(2)
µν,αβ, P

(0−θ)
µν,αβ ,

P
(0−θω)
µν,αβ , Π̃

(1)
µν,αβ, Π̃

(2)
µν,αβ, Π̃

(θΣ)
µν,αβ e Π̃

(θΛ)
µν,αβ

]
vão surgindo termos que não se identi�cam com

nenhum destes, o procedimento de fechamento é similar ao realizado para o caso da gravitação
de Chern-Simons, e o conjunto de operadores que deve ser introduzido está representado eqs.
(4.1.62)-(4.1.70).

A lagrangiana total, composta pelas contribuições de Einstein-Hilbert (sem o termo de
gauge-�xing) e violação de Lorentz é dada por:

L = LEH + LLV . (4.1.71)

Lembrando que LEH também pode ser escrita como,

LEH =
1

2
hµν

(
−ηµνηαβp

2 + 2ηµνpαpβ + ηµαηνβp
2 − 2ηναpβpµ

)
hαβ, (4.1.72)

obtemos para a eq. (4.1.71) o seguinte resultado:

L = −1

2
hµνOµν,αβh

αβ, (4.1.73)

onde

Oµν,αβ = a1P
(1)
µν,αβ + a2P

(2)
µν,αβ + a3P

(0−θ)
µν,αβ + a4P

(0−ω)
µν,αβ + a5P

(0−θω)
µν,αβ

+ a6Π̃
(1)
µν,αβ + a7Π̃

(2)
µν,αβ + a8Π̃

(θΣ)
µν,αβ + a9Π̃

(θΛ)
µν,αβ, (4.1.74)

e os coe�cientes ai são dados por:

a1 = ξ (b · p)2 − 4ξ2

κ2
(b · p)2 , a2 = p2 + ξ (b · p)2 , (4.1.75)

a3 = −ξ (b · p)2 − 24ξ2

κ2

(
b2p2 − (b · p)2 + p4

4λ

)
− 2p2 (4.1.76)

a4 =
8
√
3ξ2

κ2
(b · p)2 −

√
3ξ (b · p)2 , a5 =

4ξ2

κ2
(b · p) , (4.1.77)

a6 = −ξp2 − 4ξ2

κ2
p2, a7 = −8

√
3ξ2

κ2
(b · p) , a8 =

8
√
3ξ2

κ2
p2 −

√
3ξp2, (4.1.78)

resultado inteiramente de acordo com [22].
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4.2 Cálculo do propagador do gráviton com violação da

simetria de Lorentz

O propagador do gráviton no cenário com violação da simetria de Lorentz tem como estrutura
o operador O−1

µν,αβ, que satisfaz a relação

Oµν,κλ

(
Oκλ

,αβ

)−1
= Iµν,αβ, (4.2.1)

onde Iµν,αβ é o operador identidade dado na eq. (2.2.30). A forma mais geral proposta para
o operador O−1

µν,αβ é uma combinação linear de todos os projetores da base de Barnes-Rivers
estendida,

O−1
µν,αβ = b1P

(1)
µν,αβ + b2P

(2)
µν,αβ + b3P

(0−θ)
µν,αβ + b4P

(0−ω)
µν,αβ + b5P

(0−θω)
µν,αβ

+ b6Π̃
(1)
µν,αβ + b7Π̃

(2)
µν,αβ + b8Π̃

(θΣ)
µν,αβ + b9Π̃

(θΛ)
µν,αβ

+ b10Π̃
(ΛΛ)
µν,αβ + b11Π̃

(ωΛ−a)
µν,αβ + b12Π̃

(ωΛ−b)
µν,αβ + b13Π̃

(ωΣ)
µν,αβ + b14Π̃

(ΛΣ)
µν,αβ. (4.2.2)

O desa�o maior nesse processo é obter corretamente as contrações que envolvem todos os
operadores da base estendida. Um outro detalhe que precisa ser mencionado é o seguinte:
vimos que as contrações que envolvem P

(0−θ)
µν,αβ , P

(0−ω)
µν,αβ , e P

(0−θω)
µν,αβ , quando não nulas são não

comutativas, ou seja,

P
(0−θω)
µν,κλ P (0−θ)κλ

,αβ ̸= P
(0−θ)
µν,κλP

(0−θω)κλ
,αβ, (4.2.3)

P
(0−θω)
µν,κλ P (0−ω)κλ

,αβ ̸= P
(0−ω)
µν,κλ P (0−θω)κλ

,αβ. (4.2.4)

Dentro da base de Barnes-Rivers essas são as únicas contrações entre diferentes projetores que
possuem resultado diferente de zero (vide tabela 2.2). Esse fato chama atenção para a impor-
tância de observar a maneira como os índices dos operadores são contraídos. É importantíssimo
frisar esse detalhe porque um estudante desatento pode pensar que basta calcular uma contra-
ção que a outra terá o mesmo resultado, o que além de não ser verdade, acarreta em um erro
grave. O sistema montado com os resultados incorretos das contrações seria trivial, caso exista
uma solução não-trivial (possibilidade baixíssima devido à complexidade do sistema obtido),
estaria igualmente incorreta.

Uma outra informação relevante é que não é necessário calcular duas vezes a contração entre
dois projetores distintos, mas apenas trocar os índices dos termos não-simetrizados é su�ciente
para a obtenção do resultado. Vamos exempli�car isso na primeira contração, o restante foi
obtido apenas pela troca dos índices. Iniciamos pelas contração com P

(0−θ)
µν,αβ :

Π̃
(1)
µν,κλP

(0−θ)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
× 1

3
θκλθαβ,

=
1

6

(
θλµΣ̃νλ + θκµΣ̃νκ + θλνΣ̃µλ + θκνΣ̃µκ

)
θαβ. (4.2.5)

Notando que,
Σ̃νλθ

λ
β = (bνpλ + bλpν) θ

λ
β = bβpν − (b · p)ωνβ, (4.2.6)

decorre:

Π̃
(1)
µν,κλP

(0−θ)κλ
,αβ =

1

6
[2 (bµpν − (b · p)ωµν) + 2 (bνpµ − (b · p)ωµν)] θαβ,

Π̃
(1)
µν,κλP

(0−θ)κλ
,αβ =

1

3
[θαβbµpν + θαβbνpµ − (b · p) (ωµνθαβ + ωµνθαβ)] ,

Π̃
(1)
µν,κλP

(0−θ)κλ
,αβ =

1

3
Σ̃µνθαβ −

2

3
(b · p)ωµνθαβ. (4.2.7)
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Invertendo a ordem, temos

P
(0−θ)
µν,κλ Π̃

(1)κλ
,αβ =

1

3
θµνθκλ ×

1

2

(
θκαΣ̃

λ
β + θλαΣ̃

κ
β + θκβΣ̃

λ
α + θλβΣ̃

κ
α

)
, (4.2.8)

=
1

3
θµνθκλ

(
θκαΣ̃

λ
β + θλβΣ̃

κ
α

)
=

1

3
θµνΣ̃αβ −

2

3
(b · p) θµνωαβ. (4.2.9)

Observe que o resultado (4.2.8) poderia ser obtido a partir da eq. (4.2.7) através da troca
dos índices de θ e Σ̃. A razão disto é bem simples: ao inverter-se a ordem não mudam-se os
projetores, mas apenas os índices contraídos e os pares de índices livres. Por razões estéticas,
o restante do cálculo das contrações, bem como todos os outros cálculos mais extensos que
envolvem o propagador, estão presentes nos apêndices E e F. Abaixo estão listadas apenas as
contrações (não-nulas) dos operadores de Barnes-Rivers com os novos projetores de spin que
carregam o campo bumblebee:

Π̃
(1)
µν,κλP

(0−θ)κλ
,αβ =

1

3
Σ̃µνθαβ −

2

3
(b · p)ωµνθαβ, (4.2.10)

P
(0−θ)
µν,κλ Π̃

(1)κλ
,αβ =

1

3
θµνΣ̃αβ −

2

3
(b · p) θµνωαβ, (4.2.11)

Π̃
(2)
µν,κλP

(0−θ)κλ
,αβ =

2

3
Λµνθαβ −

(b · p)
3p2

Σ̃µνθαβ, (4.2.12)

P
(0−θ)
µν,κλ Π̃

(2)κλ
,αβ =

2

3
θµνΛαβ −

(b · p)
3p2

θµνΣ̃αβ, (4.2.13)

Π̃
(θΣ)
µν,κλP

(0−θ)κλ
,αβ =

1√
3
Σ̃µνθαβ, (4.2.14)

P
(0−θ)
µν,κλ Π̃

(θΣ)κλ
,αβ =

1√
3
θµνΣ̃αβ, (4.2.15)

Π̃
(θΛ)
µν,κλP

(0−θ)κλ
,αβ =

b2p2 − (b · p)2√
3p2

P
(0−θ)
µν,αβ +

1√
3
Λµνθαβ, (4.2.16)

P
(0−θ)
µν,κλ Π̃

(θΛ)κλ
,αβ =

b2p2 − (b · p)2√
3p2

P
(0−θ)
µν,αβ +

1√
3
θµνΛαβ, (4.2.17)

Π̃
(ΛΛ)
µν,κλP

(0−θ)κλ
,αβ =

b2p2 − (b · p)2

3p2
Λµνθαβ, (4.2.18)

P
(0−θ)
µν,κλ Π̃

(ΛΛ)κλ
,αβ =

b2p2 − (b · p)2

3p2
θµνΛαβ, (4.2.19)

Π̃
(ωΛ−b)
µν,κλ P (0−θ)κλ

,αβ =
b2p2 − (b · p)2

3p2
ωµνθαβ, (4.2.20)

P
(0−θ)
µν,κλ Π̃

(ωΛ−b)κλ
,αβ =

b2p2 − (b · p)2

3p2
θµνωαβ, (4.2.21)

Π̃
(ΛΣ)
µν,κλP

(0−θ)κλ
,αβ =

b2p2 − (b · p)2

3p2
Σ̃µνθαβ, (4.2.22)

P
(0−θ)
µν,κλ Π̃

(ΛΣ)κλ
,αβ =

b2p2 − (b · p)2

3p2
θµνΣ̃αβ, (4.2.23)
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Π̃
(1)
µν,κλP

(1)κλ
,αβ = (b · p)P (1)

µν,αβ+Π
(1−a)
µν,αβ, (4.2.24)

P
(1)
µν,κλΠ̃

(1)κλ
,αβ = (b · p)P (1)

µν,αβ+Π
(1−b)
µν,αβ, (4.2.25)

Π̃
(2)
µν,κλP

(1)κλ
,αβ =

(b · p)
p2

Π
(1−a)
µν,αβ, (4.2.26)

P
(1)
µν,κλΠ̃

(2)κλ
,αβ =

(b · p)
p2

Π
(1−b)
µν,αβ, (4.2.27)

Π̃
(θΣ)
µν,κλP

(1)κλ
,αβ =

1√
3
θµνΣ̃αβ −

2√
3
(b · p) θµνωαβ, (4.2.28)

P
(1)
µν,κλΠ̃

(θΣ)κλ
,αβ =

1√
3
Σ̃µνθαβ −

2√
3
(b · p)ωµνθαβ, (4.2.29)

Π̃
(θΛ)
µν,κλP

(1)κλ
,αβ =

(b · p)√
3p2

θµνΣ̃αβ − 2
(b · p)2√

3p2
θµνωαβ, (4.2.30)

P
(1)
µν,κλΠ̃

(θΛ)κλ
,αβ =

(b · p)√
3p2

Σ̃µνθαβ − 2
(b · p)2√

3p2
ωµνθαβ, (4.2.31)

Π̃
(ΛΛ)
µν,κλP

(1)κλ
,αβ =

(b · p)
p2

ΛµνΣ̃αβ − 2
(b · p)2

p2
Λµνωαβ, (4.2.32)

P
(1)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

(b · p)
p2

Σ̃µνΛαβ − 2
(b · p)2

p2
ωµνΛαβ, (4.2.33)

Π̃
(ωΛ−a)
µν,κλ P (1)κλ

,αβ = Π̃
(ωΛ−a)
µν,αβ − 2

(b · p)
p2

Σ̃µνωαβ, (4.2.34)

P
(1)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ = Π̃

(ωΛ−a)
µν,αβ − 2

(b · p)
p2

ωµνΣ̃αβ, (4.2.35)

Π̃
(ωΛ−b)
µν,κλ P (1)κλ

,αβ =
(b · p)
p2

ωµνΣ̃αβ −
2 (b · p)2

p2
P

(0−ω)
µν,αβ , (4.2.36)

P
(1)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ =

(b · p)
p2

Σ̃µνωαβ −
2 (b · p)2

p2
P

(0−ω)
µν,αβ , (4.2.37)

Π̃
(ωΣ)
µν,κλP

(1)κλ
,αβ = ωµνΣ̃αβ − 2 (b · p)P (0−ω)

µν,αβ , (4.2.38)

P
(1)
µν,κλΠ̃

(ωΣ)κλ
,αβ = Σ̃µνωαβ − 2 (b · p)P (0−ω)

µν,αβ , (4.2.39)

Π̃
(ΛΣ)
µν,κλP

(1)κλ
,αβ = ΛµνΣ̃αβ − 2 (b · p) Λµνωαβ + (b · p) Π̃(ωΛ−a)

µν,αβ − 2 (b · p)2

p2
Σ̃µνωαβ, (4.2.40)

P
(1)
µν,κλΠ̃

(ΛΣ)κλ
,αβ = Σ̃µνΛαβ − 2 (b · p)ωµνΛαβ + (b · p) Π̃(ωΛ−a)

µν,αβ − 2 (b · p)2

p2
ωµνΣ̃αβ, (4.2.41)

Π̃
(1)
µν,κλP

(2)κλ
,αβ = Π

(1−b)
µν,αβ − (b · p)P (1)

µν,αβ −
1

3
Σ̃µνθαβ +

2

3
(b · p)ωµνθαβ, (4.2.42)

P
(2)
µν,κλΠ̃

(1)κλ
,αβ = Π

(1−a)
µν,αβ − (b · p)P (1)

µν,αβ −
1

3
θµνΣ̃αβ +

2

3
(b · p) θµνωαβ, (4.2.43)

Π̃
(2)
µν,κλP

(2)κλ
,αβ = Π̃

(2)
µν,αβ −

(b · p)
p2

Π
(1−a)
µν,αβ −

2

3
Λµνθαβ +

(b · p)
3p2

Σ̃µνθαβ, (4.2.44)
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P
(2)
µν,κλΠ̃

(2)κλ
,αβ = Π̃

(2)
µν,αβ −

(b · p)
p2

Π
(1−b)
µν,αβ −

2

3
θµνΛαβ +

(b · p)
3p2

θµνΣ̃αβ, (4.2.45)

Π̃
(θΛ)
µν,κλP

(2)κλ
,αβ =

1√
3
θµνΛαβ −

(b · p)√
3p2

θµνΣ̃αβ +
(b · p)2√

3p2
θµνωαβ −

b2p2 − (b · p)2√
3p2

P
(0−θ)
µν,αβ , (4.2.46)

P
(2)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1√
3
Λµνθαβ −

(b · p)√
3p2

Σ̃µνθαβ +
(b · p)2√

3p2
ωµνθαβ −

b2p2 − (b · p)2√
3p2

P
(0−θ)
µν,αβ , (4.2.47)

Π̃
(ΛΛ)
µν,κλP

(2)κλ
,αβ = Π̃

(ΛΛ)
µν,αβ −

(b · p)
p2

ΛµνΣ̃αβ +
(b · p)2

p2
Λµνωαβ −

b2p2 − (b · p)2

3p2
Λµνθαβ, (4.2.48)

P
(2)
µν,κλΠ̃

(ΛΛ)κλ
,αβ = Π̃

(ΛΛ)
µν,αβ −

(b · p)
p2

Σ̃µνΛαβ +
(b · p)2

p2
ωµνΛαβ −

b2p2 − (b · p)2

3p2
θµνΛαβ, (4.2.49)

Π̃
(ωΛ−b)
µν,κλ P (2)κλ

,αβ = ωµνΛαβ −
(b · p)
p2

ωµνΣ̃αβ +
(b · p)2

p2
P

(0−ω)
µν,αβ − b2p2 − (b · p)2

3p2
ωµνθαβ, (4.2.50)

P
(2)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ = Λµνωαβ −

(b · p)
p2

Σ̃µνωαβ +
(b · p)2

p2
P

(0−ω)
µν,αβ − b2p2 − (b · p)2

3p2
θµνωαβ, (4.2.51)

Π̃
(ΛΣ)
µν,κλP

(2)κλ
,αβ = Σ̃µνΛαβ − (b · p) Π̃(ωΛ−a)

µν,αβ +
(b · p)2

p2
Σ̃µνωαβ −

b2p2 − (b · p)2

3p2
Σ̃µνθαβ, (4.2.52)

P
(2)
µν,κλΠ̃

(ΛΣ)κλ
,αβ = ΛµνΣ̃αβ − (b · p) Π̃(ωΛ−a)

µν,αβ +
(b · p)2

p2
ωµνΣ̃αβ −

b2p2 − (b · p)2

3p2
θµνΣ̃αβ, (4.2.53)

Π̃
(θΣ)
µν,κλP

(0−ω)κλ
,αβ =

2√
3
(b · p) θµνωαβ, (4.2.54)

P
(0−ω)
µν,κλ Π̃(θΣ)κλ

,αβ =
2√
3
(b · p)ωµνθαβ, (4.2.55)

Π̃
(θΛ)
µν,κλP

(0−ω)κλ
,αβ =

(b · p)2√
3p2

θµνωαβ, (4.2.56)

P
(0−ω)
µν,κλ Π̃(θΛ)κλ

,αβ =
(b · p)2√

3p2
ωµνθαβ, (4.2.57)

Π̃
(ΛΛ)
µν,κλP

(0−ω)κλ
,αβ =

(b · p)2

p2
Λµνωαβ, (4.2.58)

P
(0−ω)
µν,κλ Π̃(ΛΛ)κλ

,αβ =
(b · p)2

p2
ωµνΛαβ, (4.2.59)

Π̃
(ωΛ−a)
µν,κλ P (0−ω)κλ

,αβ =
2 (b · p)

p2
Σ̃µνωαβ, (4.2.60)

P
(0−ω)
µν,κλ Π̃(ωΛ−a)κλ

,αβ =
2 (b · p)

p2
ωµνΣ̃αβ, (4.2.61)

Π̃
(ωΛ−b)
µν,κλ P (0−ω)κλ

,αβ =
(b · p)2

p2
P

(0−ω)
µν,αβ + Λµνωαβ, (4.2.62)

P
(0−ω)
µν,κλ Π̃(ωΛ−b)κλ

,αβ =
(b · p)2

p2
P

(0−ω)
µν,αβ + ωµνΛαβ, (4.2.63)
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Π̃
(ωΣ)
µν,κλP

(0−ω)κλ
,αβ = 2 (b · p)P (0−ω)

µν,αβ + Σ̃µνωαβ, (4.2.64)

P
(0−ω)
µν,κλ Π̃(ωΣ)κλ

,αβ = 2 (b · p)P (0−ω)
µν,αβ + ωµνΣ̃αβ, (4.2.65)

Π̃
(ΛΣ)
µν,κλP

(0−ω)κλ
,αβ = 2 (b · p) Λµνωαβ +

(b · p)2

p2
Σ̃µνωαβ, (4.2.66)

P
(0−ω)
µν,κλ Π̃(ΛΣ)κλ

,αβ = 2 (b · p)ωµνΛαβ +
(b · p)2

p2
ωµνΣ̃αβ, (4.2.67)

Π̃
(1)
µν,κλP

(0−θω)κλ
,αβ =

1√
3
Σ̃µνωαβ −

2√
3
(b · p)P (0−ω)

µν,αβ , (4.2.68)

P
(0−θω)
µν,κλ Π̃(1)κλ

,αβ =
1√
3
ωµνΣ̃αβ −

2√
3
(b · p)P (0−ω)

µν,αβ , (4.2.69)

Π̃
(2)
µν,κλP

(0−θω)κλ
,αβ =

2√
3
Λµνωαβ −

(b · p)√
3p2

Σ̃µνωαβ, (4.2.70)

P
(0−θω)
µν,κλ Π̃(2)κλ

,αβ =
2√
3
ωµνΛαβ −

(b · p)√
3p2

ωµνΣ̃αβ, (4.2.71)

Π̃
(θΣ)
µν,κλP

(0−θω)κλ
,αβ = 2 (b · p)P (0−θ)

µν,αβ + Σ̃µνωαβ, (4.2.72)

P
(0−θω)
µν,κλ Π̃(θΣ)κλ

,αβ = 2 (b · p)P (0−θ)
µν,αβ + ωµνΣ̃αβ, (4.2.73)

Π̃
(θΛ)
µν,κλP

(0−θω)κλ
,αβ =

(b · p)2

p2
P

(0−θ)
µν,αβ +

b2p2 − (b · p)2

3p2
θµνωαβ + Λµνωαβ, (4.2.74)

P
(0−θω)
µν,κλ Π̃(θΛ)κλ

,αβ =
(b · p)2

p2
P

(0−θ)
µν,αβ +

b2p2 − (b · p)2

3p2
ωµνθαβ + ωµνΛαβ, (4.2.75)

Π̃
(ΛΛ)
µν,κλP

(0−θω)κλ
,αβ =

(b · p)2√
3p2

Λµνθαβ +
b2p2 − (b · p)2√

3p2
Λµνωαβ, (4.2.76)

P
(0−θω)
µν,κλ Π̃(ΛΛ)κλ

,αβ =
(b · p)2√

3p2
θµνΛαβ +

b2p2 − (b · p)2√
3p2

ωµνΛαβ, (4.2.77)

Π̃
(ωΛ−a)
µν,κλ P (0−θω)κλ

,αβ =
2 (b · p)√

3p2
Σ̃µνθαβ, (4.2.78)

P
(0−θω)
µν,κλ Π̃(ωΛ−a)κλ

,αβ =
2 (b · p)√

3p2
θµνΣ̃αβ, (4.2.79)

Π̃
(ωΛ−b)
µν,κλ P (0−θω)κλ

,αβ =
(b · p)2√

3p2
ωµνθαβ +

b2p2 − (b · p)2√
3p2

P
(0−ω)
µν,αβ +

1√
3
Λµνθαβ, (4.2.80)

P
(0−θω)
µν,κλ Π̃(ωΛ−b)κλ

,αβ =
(b · p)2√

3p2
θµνωαβ +

b2p2 − (b · p)2√
3p2

P
(0−ω)
µν,αβ +

1√
3
θµνΛαβ, (4.2.81)

Π̃
(ωΣ)
µν,κλP

(0−θω)κλ
,αβ =

2√
3
(b · p)ωµνθαβ +

1√
3
Σ̃µνθαβ, (4.2.82)

P
(0−θω)
µν,κλ Π̃(ωΣ)κλ

,αβ =
2√
3
(b · p) θµνωαβ +

1√
3
θµνΣ̃αβ, (4.2.83)
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Π̃
(ΛΣ)
µν,κλP

( 0−θω) κλ
,αβ =

2√
3
(b · p) Λµνθαβ +

(b · p)2√
3p2

Σ̃µνθαβ +
b2p2 − (b · p)2√

3p2
Σ̃µνωαβ, (4.2.84)

P
(0−θω)
µν,κλ Π̃(ΛΣ)κλ

,αβ =
2√
3
(b · p) θµνΛαβ +

(b · p)2√
3p2

θµνΣ̃αβ +
b2p2 − (b · p)2√

3p2
ωµνΣ̃αβ, (4.2.85)

Π̃
(1)
µν,κλΠ̃

(1)κλ
,αβ =

1

2
p2Π̃

(ωΛ−a)
µν,αβ − (b · p) Π̃(ωΣ)

µν,αβ + 2 (b · p)2 P (0−ω)
µν,αβ

+ p2Π̃
(2)
µν,αβ + (b · p) Π̃(1)

µν,αβ + b2p2P
(1)
µν,αβ, (4.2.86)

Π̃
(1)
µν,κλΠ̃

(2)κλ
,αβ = (b · p) Π̃(2)

µν,αβ + b2Π
(1−b)
µν,αβ + Σ̃µνΛαβ

− 1

2
(b · p) Π̃(ωΛ−a)

µν,αβ − 2 (b · p)ωµνΛαβ +
(b · p)2

p2
ωµνΣ̃αβ, (4.2.87)

Π̃
(2)
µν,κλΠ̃

(1)κλ
,αβ = (b · p) Π̃(2)

µν,αβ + b2Π
(1−a)
µν,αβ + ΛµνΣ̃αβ

− 1

2
(b · p) Π̃(ωΛ−a)

µν,αβ − 2 (b · p) Λµνωαβ +
(b · p)2

p2
Σ̃µνωαβ, (4.2.88)

Π̃
(1)
µν,κλΠ̃

(θΣ)κλ
,αβ =

1√
3
p2Π̃

(ωΛ−a)
µν,αβ − 2√

3
(b · p)2 ωµνθαβ+

2√
3
p2Λµνθαβ−

2√
3
(b · p)ωµνΣ̃αβ, (4.2.89)

Π̃
(θΣ)
µν,κλΠ̃

(1)κλ
,αβ =

1√
3
p2Π̃

(ωΛ−a)
µν,αβ − 2√

3
(b · p)2 θµνωαβ +

2√
3
p2θµνΛαβ −

2√
3
(b · p) Σ̃µνωαβ, (4.2.90)

Π̃
(1)
µν,κλΠ̃

(θΛ)κλ
,αβ =

b2p2 − (b · p)2√
3p2

Σ̃µνθαβ +
2√
3
(b · p) Λµνθαβ

− 2√
3
(b · p) b2ωµνθαβ +

1√
3
Σ̃µνΛαβ −

2√
3
(b · p)ωµνΛαβ, (4.2.91)

Π̃
(θΛ)
µν,κλΠ̃

(1)κλ
,αβ =

b2p2 − (b · p)2√
3p2

θµνΣ̃αβ +
2√
3
(b · p) θµνΛαβ

− 2√
3
(b · p) b2θµνωαβ +

1√
3
ΛµνΣ̃αβ −

2√
3
(b · p) Λµνωαβ, (4.2.92)

Π̃
(1)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

b2p2 − (b · p)2

p2
Σ̃µνΛαβ + 2 (b · p) Π̃(ΛΛ)

µν,αβ − 2 (b · p) b2ωµνΛαβ, (4.2.93)

Π̃
(ΛΛ)
µν,κλΠ̃

(1)κλ
,αβ =

b2p2 − (b · p)2

p2
ΛµνΣ̃αβ + 2 (b · p) Π̃(ΛΛ)

µν,αβ − 2 (b · p) b2Λµνωαβ, (4.2.94)

Π̃
(1)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ = 2ΛµνΣ̃αβ −

2 (b · p)2

p2
ωµνΣ̃αβ, (4.2.95)

Π̃
(ωΛ−a)
µν,κλ Π̃

(1)κλ
,αβ = 2Σ̃µνΛαβ −

2 (b · p)2

p2
Σ̃µνωαβ, (4.2.96)

68



Π̃
(1)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ =

b2p2 − (b · p)2

p2
Σ̃µνωαβ + 2 (b · p) Λµνωαβ − 2 (b · p) b2P (0−ω)

µν,αβ , (4.2.97)

Π̃
(ωΛ−b)
µν,κλ Π̃

(1)κλ
,αβ =

b2p2 − (b · p)2

p2
ωµνΣ̃αβ + 2 (b · p)ωµνΛαβ − 2 (b · p) b2P (0−ω)

µν,αβ , (4.2.98)

Π̃
(1)
µν,κλΠ̃

(ωΣ)κλ
,αβ = 2p2Λµνωαβ − 2 (b · p)2 P (0−ω)

µν,αβ , (4.2.99)

Π̃
(ωΣ)
µν,κλΠ̃

(1)κλ
,αβ = 2p2ωµνΛαβ − 2 (b · p)2 P (0−ω)

µν,αβ , (4.2.100)

Π̃
(1)
µν,κλΠ̃

(ΛΣ)κλ
,αβ = 2p2Π̃

(ΛΛ)
µν,αβ − 2 (b · p)2 ωµνΛαβ

+
[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,αβ + 2 (b · p) ΛµνΣ̃αβ − 2 (b · p) b2ωµνΣ̃αβ, (4.2.101)

Π̃
(ΛΣ)
µν,κλΠ̃

(1)κλ
,αβ = 2p2Π̃

(ΛΛ)
µν,αβ − 2 (b · p)2 Λµνωαβ

+
[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,αβ + 2 (b · p) Σ̃µνΛαβ − 2 (b · p) b2Σ̃µνωαβ, (4.2.102)

Π̃
(2)
µν,κλΠ̃

(2)κλ
,αβ = b2Π̃

(2)
µν,αβ + 2Π̃

(ΛΛ)
µν,αβ −

(b · p)
p2

Π̃
(ΛΣ)
µν,αβ +

(b · p)2

2p2
Π̃

(ωΛ−a)
µν,αβ , (4.2.103)

Π̃
(2)
µν,κλΠ̃

(θΣ)κλ
,αβ =

2√
3
(b · p) Λµνθαβ −

(b · p)2√
3p2

Σ̃µνθαβ +
2√
3
ΛµνΣ̃αβ −

1√
3
(b · p) Π̃(ωΛ−a)

µν,αβ , (4.2.104)

Π̃
(θΣ)
µν,κλΠ̃

(2)κλ
,αβ =

2√
3
(b · p) θµνΛαβ −

(b · p)2√
3p2

θµνΣ̃αβ +
2√
3
Σ̃µνΛαβ −

1√
3
(b · p) Π̃(ωΛ−a)

µν,αβ , (4.2.105)

Π̃
(2)
µν,κλΠ̃

(θΛ)κλ
,αβ =

2√
3
b2Λµνθαβ −

(b · p) b2√
3p2

Σ̃µνθαβ +
2√
3
Π̃

(ΛΛ)
µν,αβ −

(b · p)√
3p2

Σ̃µνΛαβ, (4.2.106)

Π̃
(θΛ)
µν,κλΠ̃

(2)κλ
,αβ =

2√
3
b2θµνΛαβ −

(b · p) b2√
3p2

θµνΣ̃αβ +
2√
3
Π̃

(ΛΛ)
µν,αβ −

(b · p)√
3p2

ΛµνΣ̃αβ, (4.2.107)

Π̃
(2)
µν,κλΠ̃

(ΛΛ)κλ
,αβ = 2b2Π̃

(ΛΛ)
µν,αβ −

(b · p) b2

p2
Σ̃µνΛαβ, (4.2.108)

Π̃
(ΛΛ)
µν,κλΠ̃

(2)κλ
,αβ = 2b2Π̃

(ΛΛ)
µν,αβ −

(b · p) b2

p2
ΛµνΣ̃αβ, (4.2.109)

Π̃
(2)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ =

2 (b · p)
p2

ΛµνΣ̃αβ −
(b · p)2

p2
Π̃

(ωΛ−a)
µν,αβ , (4.2.110)

Π̃
(ωΛ−a)
µν,κλ Π̃

(2)κλ
,αβ =

2 (b · p)
p2

Σ̃µνΛαβ −
(b · p)2

p2
Π̃

(ωΛ−a)
µν,αβ , (4.2.111)

Π̃
(2)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ = 2b2Λµνωαβ −

(b · p) b2

p2
Σ̃µνωαβ, (4.2.112)

Π̃
(ωΛ−b)
µν,κλ Π̃

(2)κλ
,αβ = 2b2ωµνΛαβ −

(b · p) b2

p2
ωµνΣ̃αβ, (4.2.113)
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Π̃
(2)
µν,κλΠ̃

(ωΣ)κλ
,αβ = 2 (b · p) Λµνωαβ −

(b · p)2

p2
Σ̃µνωαβ, (4.2.114)

Π̃
(ωΣ)
µν,κλΠ̃

(2)κλ
,αβ = 2 (b · p)ωµνΛαβ −

(b · p)2

p2
ωµνΣ̃αβ, (4.2.115)

Π̃
(2)
µν,κλΠ̃

(ΛΣ)κλ
,αβ = 2 (b · p) Π̃(ΛΛ)

µν,αβ −
(b · p)2

p2
Σ̃µνΛαβ + 2b2ΛµνΣ̃αβ − (b · p) b2Π̃(ωΛ−a)

µν,αβ , (4.2.116)

Π̃
(ΛΣ)
µν,κλΠ̃

(2)κλ
,αβ = 2 (b · p) Π̃(ΛΛ)

µν,αβ −
(b · p)2

p2
ΛµνΣ̃αβ + 2b2Σ̃µνΛαβ − (b · p) b2Π̃(ωΛ−a)

µν,αβ , (4.2.117)

Π̃
(θΣ)
µν,κλΠ̃

(θΣ)κλ
,αβ = 2

[
b2p2 + (b · p)2

]
P

(0−θ)
µν,αβ + p2Π̃

(ωΛ−a)
µν,αβ , (4.2.118)

Π̃
(θΣ)
µν,κλΠ̃

(θΛ)κλ
,αβ = 2 (b · p) b2P (0−θ)

µν,αβ +
b2p2 − (b · p)2

3p2
Σ̃µνθαβ + Σ̃µνΛαβ, (4.2.119)

Π̃
(θΛ)
µν,κλΠ̃

(θΣ)κλ
,αβ = 2 (b · p) b2P (0−θ)

µν,αβ +
b2p2 − (b · p)2

3p2
θµνΣ̃αβ + ΛµνΣ̃αβ, (4.2.120)

Π̃
(θΣ)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

2√
3
(b · p) b2θµνΛαβ +

b2p2 − (b · p)2√
3p2

Σ̃µνΛαβ, (4.2.121)

Π̃
(ΛΛ)
µν,κλΠ̃

(θΣ)κλ
,αβ =

2√
3
(b · p) b2Λµνθαβ +

b2p2 − (b · p)2√
3p2

ΛµνΣ̃αβ, (4.2.122)

Π̃
(θΣ)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ =

2
[
b2p2 + (b · p)2

]
√
3p2

θµνΣ̃αβ, (4.2.123)

Π̃
(ωΛ−a)
µν,κλ Π̃

(θΣ)κλ
,αβ =

2
[
b2p2 + (b · p)2

]
√
3p2

Σ̃µνθαβ, (4.2.124)

Π̃
(θΣ)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ =

2√
3
(b · p) b2θµνωαβ +

2√
3
(b · p) θµνΛαβ +

b2p2 − (b · p)2√
3p2

Σ̃µνωαβ, (4.2.125)

Π̃
(ωΛ−b)
µν,κλ Π̃

(θΣ)κλ
,αβ =

2√
3
(b · p) b2ωµνθαβ +

2√
3
(b · p) Λµνθαβ +

b2p2 − (b · p)2√
3p2

ωµνΣ̃αβ, (4.2.126)

Π̃
(θΣ)
µν,κλΠ̃

(ωΣ)κλ
,αβ =

2√
3

[
b2p2 + (b · p)2

]
θµνωαβ +

2√
3
(b · p) θµνΣ̃αβ, (4.2.127)

Π̃
(ωΣ)
µν,κλΠ̃

(θΣ)κλ
,αβ =

2√
3

[
b2p2 + (b · p)2

]
ωµνθαβ +

2√
3
(b · p) Σ̃µνθαβ, (4.2.128)

Π̃
(θΣ)
µν,κλΠ̃

(ΛΣ)κλ
,αβ =

2√
3

[
b2p2 + (b · p)2

]
θµνΛαβ

+
2√
3
(b · p) b2θµνΣ̃αβ +

1√
3

[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,αβ , (4.2.129)
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Π̃
(ΛΣ)
µν,κλΠ̃

(θΣ)κλ
,αβ =

2√
3

[
b2p2 + (b · p)2

]
Λµνθαβ

+
2√
3
(b · p) b2Σ̃µνθαβ +

1√
3

[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,αβ , (4.2.130)

Π̃
(θΛ)
µν,κλΠ̃

(θΛ)κλ
,αβ = b4P

(0−θ)
µν,αβ +

b2p2 − (b · p)2√
3p2

Π̃
(θΛ)
µν,αβ + Π̃

(ΛΛ)
µν,αβ, (4.2.131)

Π̃
(θΛ)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

1√
3
b4θµνΛαβ +

b2p2 − (b · p)2√
3p2

Π̃
(ΛΛ)
µν,αβ, (4.2.132)

Π̃
(ΛΛ)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1√
3
b4Λµνθαβ +

b2p2 − (b · p)2√
3p2

Π̃
(ΛΛ)
µν,αβ, (4.2.133)

Π̃
(θΛ)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ =

2 (b · p) b2√
3p2

θµνΣ̃αβ, (4.2.134)

Π̃
(ωΛ−a)
µν,κλ Π̃

(θΛ)κλ
,αβ =

2 (b · p) b2√
3p2

Σ̃µνθαβ, (4.2.135)

Π̃
(θΛ)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ =

1√
3
b4θµνωαβ +

(b · p)2√
3p2

θµνΛαβ +
b2p2 − (b · p)2√

3p2
Λµνωαβ, (4.2.136)

Π̃
(ωΛ−b)
µν,κλ Π̃

(θΛ)κλ
,αβ =

1√
3
b4ωµνθαβ +

(b · p)2√
3p2

Λµνθαβ +
b2p2 − (b · p)2√

3p2
ωµνΛαβ, (4.2.137)

Π̃
(θΛ)
µν,κλΠ̃

(ωΣ) κλ
,αβ =

2√
3
(b · p) b2θµνωαβ +

(b · p)2√
3p2

θµνΣ̃αβ, (4.2.138)

Π̃
(ωΣ)
µν,κλΠ̃

(θΛ)κλ
,αβ =

2√
3
(b · p) b2ωµνθαβ +

(b · p)2√
3p2

Σ̃µνθαβ, (4.2.139)

Π̃
(θΛ)
µν,κλΠ̃

(ΛΣ) κλ
,αβ =

2√
3
(b · p) b2θµνΛαβ +

1√
3
b4θµνΣ̃αβ +

b2p2 − (b · p)2√
3p2

ΛµνΣ̃αβ, (4.2.140)

Π̃
(ΛΣ)
µν,κλΠ̃

(θΛ)κλ
,αβ =

2√
3
(b · p) b2Λµνθαβ +

1√
3
b4Σ̃µνθαβ +

b2p2 − (b · p)2√
3p2

Σ̃µνΛαβ. (4.2.141)

Após calcularmos todos os produtos de contração tensorial entre os projetores da base estendida,
é preciso substituí-los na expressão (4.2.1) e coletar os termos semelhantes, formando um sistema
de equações (veja o apêndice F), por meio de comparação com os projetores que constituem o
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operador identidade dado na eq. (2.2.30). A solução do sistema obtido fornece:

b1 =
N1

κ2ξ2 (b · p)2 ⊡⊞
, b2 =

1

⊞
, b3 = − 1

2⊞
,

b4 =
N4

2λκ2ξ2 (b · p)4 ⊡2 ⊞
, b5 =

N5

2ξ (b · p)2 ⊡⊞
,

b6 =
p2

ξ (b · p)⊡⊞
, b7 =

p2

⊡⊞
, b8 =

N8

4ξ (b · p)⊡⊞
,

b9 = −
√
3p2

2⊡⊞
, b10 =

p4

2⊡2 ⊞
, b11 =

N11

8ξ2 (b · p)2 ⊡2 ⊞
,

b12 =
N12

2ξ (b · p)2 ⊡2 ⊞
, b13 =

N13

4κ2ξ2 (b · p)3 ⊡2 ⊞
,

b14 =
N14

4ξ (b · p)⊡2 ⊞
, (4.2.142)

onde os símbolos ⊡ e ⊞ são funções do momento (pµ) e do campo bumblebee (bµ), possuindo
o seguinte formato:

⊞ = p2 + ξ (b · p)2 , (4.2.143)

⊡ = (b · p)2 − b2p2. (4.2.144)

Já os coe�cientes representados por Ni são:

N1 = ξ
(
4ξ + κ2

)
⊡⊞+ κ2p4, (4.2.145)

N4 = ξ2 ⊡2
[
p2F1 (p) + λκ2 (b · p)4

]
+ 4λξκ2p2 (b · p)4⊡

+ ξ3 (b · p)2 ⊡2 F1 (p)− λκ2p4
[
b4p4 − 4 (b · p)4 + 2b2p2 (b · p)2

]
, (4.2.146)

N5 =
√
3
[
b2p4 − ξ (b · p)2⊡

]
, N8 =

√
3
[
ξ (b · p)2 − p2

]
, (4.2.147)

N11 = p2
[
p2 − ξ (b · p)2

]2
, N12 = p4

[
2b2p2 − 3 (b · p)2

]
− 2ξp2 (b · p)2⊡, (4.2.148)

N13 = F1 (p) ξ
2 ⊡−16ξ3 (b · p)2 ⊡2 +ξκ2b2p4

[
2 (b · p)2 − b2p2

]
+ κ2p4

[
2b2p2 − 3 (b · p)2

]
,

(4.2.149)
N14 = p2

[
p2 − ξ (b · p)2

]
, (4.2.150)

sendo F1 (p) e F2 (p) dados por:

F1 (p) = 16λ
[
(b · p)2 + b2p2

]
+ p4, (4.2.151)

F2 (p) = κ2 (b · p)2
[
(b · p)2 + b2p2

]
+ 16p2 ⊡ . (4.2.152)

Com isso, o propagador de Feynmann para o gráviton no cenário com violação da simetria de
Lorentz é

∆µν,αβ =
i

⊞

{
N1

κ2ξ2 (b · p)2⊡
P

(1)
µν,αβ + P

(2)
µν,αβ −

1

2
P

(0−θ)
µν,αβ +

N4

2λκ2ξ2 (b · p)4⊡2
P

(0−ω)
µν,αβ

+
N5

2ξ (b · p)2⊡
P

(0−θω)
µν,αβ +

p2

ξ (b · p)⊡
Π̃

(1)
µν,αβ +

p2

⊡
Π̃

(2)
µν,αβ +

N8

4ξ (b · p)⊡
Π̃

(θΣ)
µν,αβ

−
√
3p2

2⊡
Π̃

(θΛ)
µν,αβ +

p4

2⊡2
Π̃

(ΛΛ)
µν,αβ +

N11

8ξ2 (b · p)2⊡2
Π̃

(ωΛ−a)
µν,αβ +

N12

2ξ (b · p)2⊡2
Π̃

(ωΛ−b)
µν,αβ

+
N13

4κ2ξ2 (b · p)3⊡2
Π̃

(ωΣ)
µν,αβ +

N14

4ξ (b · p)⊡2
Π̃

(ΛΣ)
µν,αβ

}
. (4.2.153)
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A partir do propagador ∆µν,αβ extraímos as seguintes relações de dispersão

⊞ = p2 + ξ (b · p)2 = 0, (4.2.154)

⊡ = (b · p)2 − b2p2 = 0. (4.2.155)

Vamos analisar cada uma separadamente e veri�car se os modos obtidos são causais. Para
isso, consideraremos duas diferentes con�gurações para o campo bumblebee, uma tipo-tempo,
bµ = (b0,0), e a outra do tipo-espaço, bµ = (0,b).

As raízes de ⊞ = 0, para um campo de fundo genérico bµ = (b0,b) são dadas por:

p0 =
ξb0 |b| |p| cos θ ± |p|

√
1 + ξ

(
b20 − |b|2 cos2 θ

)
1 + ξb20

, (4.2.156)

onde usamos b ·p = |b| |p| cos θ. Note não haver nenhuma restrição explícita quanto à con�gu-
ração do campo bµ, ou seja, p0 possui solução bem de�nida em ambas con�gurações: tipo-espaço
e tipo-tempo. Iniciamos considerando o caso em que o campo bumblebee é tipo-tempo na eq.
(4.2.156), que produz:

p0 = ±|p|
√

1 + ξb20
1 + ξb20

= ± |p|√
1 + ξb20

. (4.2.157)

A velocidade de grupo associada é dada por

ug =
1√

1 + ξb20
, (4.2.158)

sendo menor que 1 desde que ξ > 0. A velocidade de fase uf será

uf =
p0
|p|

= ug < 1. (4.2.159)

Portanto, este modo é causal para uma con�guração do tipo-tempo com ξ > 0. Vamos examinar
o caso de uma con�guração tipo-espaço, neste caso a eq. (4.2.156) torna-se:

p0 = ± |p|
√
1− ξ |b|2 cos2 θ. (4.2.160)

Neste caso, a velocidade de grupo tem a forma a seguir:

ug =

√
1− ξ |b|2 cos2 θ, (4.2.161)

que será menor que 1 para ξ > 0, e ξ |b|2 < 1. Em resumo, o modo de propagação associado
ao polo ⊞ = 0 é causal nas duas con�gurações possíveis para bµ com a mesma restrição sobre
a constante ξ (ξ > 0) e a restrição adicional ξ |b|2 < 1.

Vamos agora olhar para o segundo polo ⊡ = 0. A solução geral deste modo é dada pela
expressão

p0 =
|p|
|b|

[
b0 cos θ ±

√(
|b|2 − b20

)
sin2 θ

]
. (4.2.162)

Note que agora temos uma restrição importante, a raiz quadrada não é de�nida para números
negativos (dentro de R). Portanto, devemos ter

|b|2 − b20 > 0, (4.2.163)
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que representa uma con�guração tipo-espaço, ou seja, para o polo ⊡ = 0, o campo bµ não
admite uma con�guração tipo-tempo. Assim, para bµ = (0,b), a eq. (4.2.162) torna-se

p0 = ± |p| sin θ. (4.2.164)

A velocidade de grupo desse modo equivale a

ug = sin θ ≤ 1, (4.2.165)

sendo igual à velocidade de fase uf . A relação de dispersão representada na eq. (4.2.164),
embora esteja de acordo com o princípio da causalidade, re�ete um comportamento físico
exótico, onde a energia do modo depende crucialmente da direção de propagação, ou melhor,
o ângulo formado entre o momento linear do gráviton e o vetor de fundo b, que representa o
campo de violação da simetria de Lorentz.
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CAPÍTULO 5
Conclusões e perspectivas

Esta dissertação tratou da revisão de conceitos da gravitação de Einstein-Hilbert, com ênfase
no cálculo do propagador de Feynman do gráviton na teoria gravitacional usual e em modelos
gravitacionais alternativos. Os desenvolvimentos aqui realizados podem ser aplicados em outros
cenários ainda não explorados na literatura, o que constitui uma motivação adicional para esse
estudo

No capítulo 2, realizamos uma breve descrição do método de projetores tensoriais para o
cálculo do propagador em teorias de calibre de spin-1, apenas para familiarizar o leitor com o
formalismo que foi empregado em todo este trabalho.

O capítulo 3 destina-se a apresentar a base de Barnes-Rivers como ferramental apropriado
para calcular o propagador do gráviton em qualquer teoria gravitacional não-massiva, e cuja
lagrangiana seja escrita apenas em termos do tensor de Ricci e suas respectivas contrações.
No �nal, aplicamos o resultado obtido para a gravitação de Einstein-Hilbert e veri�camos que
a relação de dispersão dessa teoria é compatível com a das ondas gravitacionais planas, com
velocidade de propagação igual a c.

No quarto capítulo abordamos dois modelos gravitacionais alternativos, o primeiro consiste
em uma versão estendida da teoria gravitacional de Einstein-Hilbert modi�cada por termos
do tipo R2 e RµνR

µν . O propagador do gráviton obtido nesses nos permite obter dois no-
vos modos massivos de propagação: um possui relação de dispersão em conformidade com a
causalidade, porém, o outro modo a viola. Este resultado evidencia a di�culdade de se obter
uma teoria gravitacional consistente (sem táquions) e que seja renormalizável, pois um gráviton
massivo, por si só, não é necessariamente problemático, podendo tornar a gravitação renorma-
lizável sem comprometer a unitariedade [59]. Ainda no capítulo 4, consideramos a gravitação
de Einstein-Chern-Simons, que é uma teoria para gravidade em (2 + 1) dimensões. Neste mo-
delo, considerado um �toy model�, os operadores que constituem a base de Barnes-Rivers não
formam um conjunto fechado. Vimos que a estrutura antissimétrica do símbolo de Levi-Civita
implicou na necessidade de obtenção de uma versão estendida para a base de Barnes-Rivers,
que permitisse calcular corretamente o propagador num cenário de (2 + 1) dimensões. O pro-
pagador obtido possui, além do polo usual, um polo adicional massivo que é compatível com a
causalidade e pode tornar a teoria renormalizável [59].

No quinto e último capítulo, Consideramos uma teoria de gravitação constituída pelo aco-
plamento entre o campo bumblebee (bµ) e a lagrangiana de Einstein-Hilbert. Aqui também se
faz necessária uma extensão da base de Barnes-Rivers, através de projetores que contenham o
campo bumblebee, que é o violador da simetria de Lorentz. Além do modo não-massivo, ob-
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tivemos mais dois modos de propagação, ambos possuem relações de dispersão que respeitam
a causalidade. No entanto, a relação de dispersão associada ao modo ⊡ = 0 apresenta um
comportamento físico inesperado, onde a energia passa a depender do ângulo entre a direção de
propagação e o campo de fundo (b) , que é o responsável pela violação da simetria de Lorentz.
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APÊNDICE A
Variação do escalar de Ricci e de δ (

√
−g)

Para calcular a variação do escalar de Ricci, vamos escrevê-lo na forma contraída R = gµνRµν ,
de modo que vale

δR = δ (gµνRµν) = Rµνδg
µν + gµνδRµν .

A variação do tensor de Ricci é dada pela identidade de Palatini [11],

δRµν = ∇λ

(
δΓλ

µν

)
−∇ν

(
δΓλ

µλ

)
, (A.0.1)

sendo
∇λA

µ = ∂λA
µ + AκΓµ

κλ, (A.0.2)

a derivada covariante. Podemos demonstrar a eq. [A.0.1] variando cada termo do tensor de
Ricci

δRµν = ∂λδΓ
λ
µν − ∂νδΓ

λ
µλ + δΓα

µνΓ
λ
αλ − δΓλ

ανΓ
α
µλ + Γα

µνδΓ
λ
αλ − Γλ

ανδΓ
α
µλ. (A.0.3)

Para calcular esta expressão, precisamos encontrar uma forma para o termo δΓλ
µν . Para isso,

partimos da diferenciação da matriz inversa,

δgλγ = −gρλgσγδgρσ, (A.0.4)

e os símbolos de Christo�el de primeiro tipo são dados por

Γµνγ = gγλΓ
λ
µν =

1

2
(∂νgµγ + ∂µgνγ − ∂γgµν) . (A.0.5)

Podemos então escrever a variação dos símbolos de Christo�el como

δΓλ
µν = δ

(
gγλΓµνγ

)
= Γµνγδg

γλ + gρλδΓµνρ,

= −gσγgρλδgρσΓµνγ + gρλδΓµνρ,

= −gρλδgρσΓ
σ
µν +

1

2
gρλ (∂νδgµρ + ∂µδgνρ − ∂ρδgµν) ,

δΓλ
µν =

1

2
gρλ (∂νδgµρ + ∂µδgνρ − ∂ρδgµν − 2Γσ

µνδgρσ) . (A.0.6)

Como 2Γσ
µνδgρσ = Γσ

µνδgρσ + Γσ
µνδgρσ, vamos então somar e subtrair este termo na equação

acima, de modo que temos:

δΓλ
µν =

1

2
gρλ (∂νδgµρ + ∂µδgνρ − ∂ρδgµν − Γσ

µνδgρσ

−Γσ
µνδgρσ + Γσ

µνδgρσ + Γσ
µνδgρσ − Γσ

µνδgρσ − Γσ
µνδgρσ) .
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Renomeando os índices contraídos, surgem termos que podem ser identi�cados como a derivada
covariante,

δΓλ
µν =

1

2
gρλ (∂νδgµρ − Γα

µνδgρα − Γα
νρδgαµ) + (∂µδgνρ − Γα

νµδgρα − Γα
ρµδgαν)

− (∂ρδgµν − Γα
µρδgνα − Γα

νρδgσµ) ,

δΓλ
µν =

1

2
gρλ (∇νδgµρ +∇µδgνρ −∇ρδgµν) . (A.0.7)

Importante frisar que estamos considerando a métrica como sendo uma matriz diagonal, por

isso que as eqs. (A.0.4) e (A.0.13) não possuem problemas na sua concepção. Na eq. (A.0.7),
desde que δgµρ seja um tensor, δΓλ

µν também será um tensor. Portanto, podemos usar a
de�nição de derivada covariante para simpli�car a expressão (A.0.3). Somando e subtraindo os
termos Γλ

ανΓ
α
µλ e Γλ

µκΓ
κ
νλ, temos

δRµν = ∂λδΓ
λ
µν + δ

(
Γσ

µνΓ
λ
σλ

)
− δ

(
Γλ

ανΓ
α
µλ

)
− δ

(
Γλ

µκΓ
κ
νλ

)
−
[
∂νδΓ

λ
µλ + δ

(
Γσ

µνΓ
λ
σλ

)
− δ

(
Γα

µνΓ
λ
αλ

)
− δ

(
Γλ

µκΓ
κ
νλ

)]
,

que pela de�nição de derivada covariante pode ser escrita como

δRµν = ∇λ

(
δΓλ

µν

)
−∇ν

(
δΓλ

µλ

)
. (A.0.8)

Logo,
δR = Rµνδg

µν + gµν
[
∇λ

(
δΓλ

µν

)
−∇ν

(
δΓλ

µλ

)]
.

A variação do termo δ (
√
−g) é

δ
(√

−g
)
= − 1

2
√
−g

δg. (A.0.9)

A variação de g pode ser escrita como

δg =
∂g

∂gρσ
δgρσ, (A.0.10)

e sabemos que o determinante de uma matriz pode ser obtido pela seguinte expressão

g = det (gρσ) = gρσAρσ, (A.0.11)

onde Aρσ representa a matriz dos cofatores da matriz em questão. Assim, ao derivarmos a
expressão acima temos:

∂g

∂gρσ
= Aρσ. (A.0.12)

De modo que podemos reescrever a variação de g como:

δg =
∂g

∂gρσ
δgρσ = Aρσδgρσ. (A.0.13)

Por outro lado, a inversa de uma matriz é dada pela expressão

(gρσ)
−1 = gρσ =

1

g
(Aρσ)t ,
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ou ainda,
Aρσ = (ggρσ)t .

Logo,
δg = (ggρσ)t δgρσ,

como o tensor métrico é simétrico, a operação de transposição não causará alteração

δg = ggρσδgρσ.

Finalmente,

δ
(√

−g
)
= − 1

2
√
−g

ggρσδgρσ =
1

2

√
−ggρσδgρσ,

por meio da eq. (A.0.4), temos

δ
(√

−g
)
= −1

2

√
−ggρσδg

ρσ. (A.0.14)

Assim,

δ
(√

−gR
)
=

√
−gδR +Rδ

(√
−g
)

=
√
−g

[
Rµνδg

µν +∇λ

(
gµνδΓλ

µν

)
−∇ν

(
gµνδΓλ

µλ

)
− 1

2
Rgµνδg

µν

]
,

onde usamos o fato de que ∇λg
µν = 0 e gµνδg

µν = −gµνδgµν .
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APÊNDICE B
Expansão em segunda ordem da
lagrangiana de Einstein-Hilbert

Vimos que a versão linearizada da lagrangiana de Einstein-Hilbert possui apenas termos em
primeira ordem no campo do gráviton. Para encontrarmos a sua expansão adequada, vamos
buscar pelos termos de até segunda ordem para cada um dos entes que compõem a lagrangiana

SE−H =

∫ √
−g [gµν ]R [gµν ] dx

4. (B.0.1)

A expansão a ser adotada para a métrica é a seguinte

gµν = ηµν + εhµν . (B.0.2)

O primeiro passo é obter a métrica inversa e a raiz do determinante da métrica. Para pequenos
valores de ε teremos

|εhµν | ≪ 1, (B.0.3)

e podemos aplicar a série de Newmann

(I − A)−1 =
∞∑
l=0

Al.

A �m de obter uma expressão para comparação, podemos reescrever

gµν = ηµκ (δ
κ
ν + εhκ

ν) , (B.0.4)

assim
A = −εhκ

ν . (B.0.5)

Aplicando a série de Newmann

(I − A)−1 = I + A+ A2 + ..., (B.0.6)

logo,

gµν = ηµκ (δκν + εhκ
ν)

−1

gµν = ηµκ
[
δνκ − εhν

κ + ε2hν
γh

γ
κ +O

(
ε3
)]

,

= ηµν − εhµν + ε2hµγhν
γ +O

(
ε3
)
.
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A seguir, usamos a expressão acima para obter a expansão do determinante da métrica, a
identidade que nos permite fazer isso é a seguinte

det (A) = exp [Tr log (A)] . (B.0.7)

Assim, √
− det (gµν) =

√
− det (ηµκ)

√
det (δκν + εhκ

ν), (B.0.8)

sabemos que det (ηµκ) = −1, e det (δκν + εhκ
ν) = exp [Tr log (δκν + εhκ

ν)]√
− det (gµν) =

√
exp [Tr log (δκν + εhκ

ν)],

= exp

[
1

2
Tr log (δκν + εhκ

ν)

]
, (B.0.9)

onde usamos
√
ea = e

a
2 . A expansão em séries da função logarítmica de uma matriz é dada por

log (A) =
∞∑
n=1

(−1)n−1 (A− I)n

n
, (B.0.10)

o termo I é matriz identidade que nesse caso é representada pela delta de Kronecker, assim

log (δκν + εhκ
ν) =

∞∑
n=1

(−1)n−1 (δκν + εhκ
ν − δκν)

n

n
,

=
∞∑
n=1

(−1)n−1 (εhκ
ν)

n

n
, (B.0.11)

logo √
− det (gµν) = exp

[
1

2
Tr

∞∑
n=1

(−1)n−1 (εhκ
ν)

n

n

]
, (B.0.12)

usando a expansão em séries da exponencial√
− det (gµν) =

∞∑
k=0

1

k!

[
1

2
Tr

∞∑
n=1

(−1)n−1 (εhκ
ν)

n

n

]k
, (B.0.13)

= 1 +
1

2
εh+

1

8
ε2
(
h2 − 2hκ

γh
γ
ν

)
+O

(
ε3
)
.

Essa passagem para a última linha é a única que ainda não está completamente clara, no
entanto, obter o restante dos elementos é bem intuitivo. Para os Símbolos de Chirsto�el

Γα
µν =

1

2
gαγ (∂µgγν + ∂νgγµ − ∂γgµν) ,

=
1

2

[
ηαγ − εhαγ + ε2hακhγ

κ +O
(
ε3
)]

(ε∂µhγν + ε∂νhγµ − ε∂γhµν) , (B.0.14)

onde usamos o fato de a métrica de Minkowski ser constante, consequentemente ∂γηµν = 0, o
que resulta

Γα
µν =

ε

2
(∂µh

α
ν + ∂νh

α
µ − ∂αhµν)−

ε2

2
hα

γ (∂µh
γ
ν + ∂νh

γ
µ − ∂γhµν) +O

(
ε3
)
,

Γα
µν = εGα

µν − ε2hα
γGγ

µν +O
(
ε3
)
, (B.0.15)
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de�nimos a quantidade

Gα
µν =

1

2
(∂µh

α
ν + ∂νh

α
µ − ∂αhµν) , (B.0.16)

que será útil na simpli�cação das expressões a seguir. O tensor de Riemann, em termos dos
Simbolos de Christo�el, possui a forma

Rα
µγν = ∂γΓ

α
µν − ∂νΓ

α
µγ + Γα

γκΓ
κ
µν − Γα

νκΓ
κ
µγ, (B.0.17)

assim o tensor de Ricci Rµν pode ser escrito como

Rµν = −2∂[ν Γ
γ
γ]µ + 2Γκ

µ[ν Γ
α
α]κ, (B.0.18)

os colchetes nos índices fazem parte da notação compacta para antissimetria. Substituindo os
Símbolos de Christo�el obtidos anteriormente, podemos obter

Rµν = −2ε∂[µGγ
γ]ν + 2ε2Gκ

ν[µGα
α]κ. (B.0.19)

Finalmente, podemos obter uma expressão para o escalar de Ricci que é o termo que compõe
lagrangiana de Einstein-Hilbert

R = gµνRµν ,

=
[
ηµν − εhµν + ε2hµγhν

γ +O
(
ε3
)]

Rµν , (B.0.20)

os termos que irão contribuir são

ηµνRµν = −2εηµν∂[µGγ
γ]ν + 2ε2ηµνGκ

ν[µGα
α]κ, (B.0.21)

εhµνRµν = 2ε2hµν∂[µGγ
γ]ν .

Escrevemos os resultados termo a termo

ηµν∂[µGγ
γ]ν =

1

2
□h− 1

2
∂µ∂νh

µν , (B.0.22)

ηµνGκ
ν[µGα

α]κ =
1

4
∂µh∂νh

µν − 1

8
∂αh∂

αh− 1

4
∂αhµν∂νhµα +

1

8
∂νhµα∂νh

µα, (B.0.23)

hµν∂[µGγ
γ]ν =

1

4
hµν∂µ∂νh− 1

2
hµν∂γ∂µh

γ
ν +

1

4
hµν□hµν . (B.0.24)

Assim,

R = −2ε

(
1

2
□h− 1

2
∂µ∂νh

µν

)
+ 2ε2

(
1

4
∂µh∂νh

µν − 1

8
∂αh∂

αh− 1

4
∂αhµν∂νhµα +

1

8
∂νhµα∂νh

µα

)
+ 2ε2

(
1

4
hµν∂µ∂νh− 1

2
hµν∂γ∂µh

γ
ν +

1

4
hµν□hµν

)
+O

(
ε3
)
,

usando o truque da derivada total, simpli�camos a expressão acima

R = −ε (□h− ∂µ∂νh
µν) + 2ε2

(
−1

8
∂αh∂

αh− 1

8
∂νhµα∂νh

µα +
1

4
∂αhµν∂νhµα

)
+O

(
ε3
)
.

(B.0.25)
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A lagrangiana de Einstein-Hilbert, tomada sob a forma

LE−H =
√

−g [gµν ]R [gµν ] , (B.0.26)

na sua expansão em segunda ordem pode ser obtida ao substituir as expansões para
√
−g e R

LE−H =

[
1 +

1

2
εh+

1

8
ε2
(
h2 − 2hκ

γh
γ
ν

)
+O

(
ε3
)]

×
[
−ε (□h− ∂µ∂νh

µν) + 2ε2
(
−1

8
∂αh∂

αh− 1

8
∂νhµα∂νh

µα +
1

4
∂αhµν∂νhµα

)
+O

(
ε3
)]

,

(B.0.27)

LE−H = −ε (□h− ∂µ∂νh
µν)− 1

2
ε2 (h□h− h∂µ∂νh

µν)

+ ε2
(
−1

4
∂αh∂

αh− 1

4
∂νhµα∂νh

µα +
1

2
∂αhµν∂νhµα

)
+O

(
ε3
)
, (B.0.28)

LE−H = −ε (□h− ∂µ∂νh
µν)

+ ε2
(
−1

4
∂αh∂

αh− 1

4
∂νhµα∂νh

µα +
1

2
∂αhµν∂νhµα − 1

2
h□h+

1

2
h∂µ∂νh

µν

)
+O

(
ε3
)
,

(B.0.29)

novamente, podemos simpli�car reescrevendo alguns termos usando a derivada total

LE−H = −ε (□h− ∂µ∂νh
µν)

+ ε2
(
1

4
∂αh∂

αh− 1

2
∂µh∂νh

µν − 1

4
∂νhµα∂νh

µα +
1

2
∂αhµν∂νhµα

)
+O

(
ε3
)
. (B.0.30)

Podemos identi�car esses resultados da seguinte forma:

L(1)
E−H = − (□h− ∂µ∂νh

µν) , (B.0.31)

é o termo da expansão em primeira ordem, também conhecida como aproximação para campo
gravitacional fraco, utilizada principalmente na obtenção das ondas gravitacionais. O segundo,

L(2)
E−H =

1

4
∂αh∂

αh− 1

2
∂µh∂νh

µν − 1

4
∂νhµα∂νh

µα +
1

2
∂αhµν∂νhµα, (B.0.32)

será usado na obtenção do propagador. Uma observação importante é que �zemos a expansão
na métrica de Minkowski, ou seja, o termo L(0)

E−H não aparece porque é nulo devido ao fato de
a métrica de Minkowski ser constante.
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APÊNDICE C
Equações de campo em primeira ordem
em hµν

Seguindo a abordagem do Schutz [19], partimos da expansão

gµν = ηµν + hµν , com |hµν | ≪ 1, (C.0.1)

onde também temos
gµν = ηµν − hµν . (C.0.2)

De forma direta, a linearização das equações de campo consiste em escrever as equações de
Einstein em termos da métrica (C.0.1), ou seja, devemos escrever as contrações do tensor de
Riemann (tensor e escalar de Ricci) em termos da eq. (C.0.1). Vimos que o tensor de Riemann
pode ser escrito em termos dos símbolos de Christo�el:

Rν
αβµ = ∂βΓ

ν
αµ − ∂µΓ

ν
αβ + Γν

βγΓ
γ
αµ − Γν

µγΓ
γ
αβ, (C.0.3)

enquanto os símbolos de Christo�el são:

Γν
αµ =

1

2
gγν (∂µgγα + ∂αgγµ − ∂γgαµ) . (C.0.4)

Substituindo as equações (C.0.1) e (C.0.2) em (C.0.4), temos:

Γν
αµ =

1

2
(ηγν − hγν) [∂µ (ηγα + hγα) + ∂α (ηγµ + hγµ)− ∂γ (ηαµ + hαµ)] .

Usando o fato de a métrica de Minkowski ser constante, temos:

Γν
αµ =

1

2
(ηγν − hγν) (∂µhγα + ∂αhγµ − ∂γhαµ) .

Vamos considerar apenas termos em primeira ordem em |hµν | , ou seja:

Γν
αµ =

1

2
ηγν (∂µhγα + ∂αhγµ − ∂γhαµ) . (C.0.5)

Observe que, ao substituírmos (C.0.5) em (C.0.3), os produtos de dois símbolos de Christo�el
geram apenas termos de segunda ordem em |hµν | , isso reduz nosso trabalho apenas ao cálculo
dos dois primeiros termos do tensor de Riemann, a saber:

Rν
αβµ =

1

2
ηγν [∂β (∂µhγα + ∂αhγµ − ∂γhαµ)]−

1

2
ηγν [∂µ (∂βhγα + ∂αhγβ − ∂γhαβ)] ,
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Rν
αβµ =

1

2
ηγν (∂β∂αhγµ − ∂β∂γhαµ − ∂µ∂αhγβ + ∂µ∂γhαβ) . (C.0.6)

Lembrando que a métrica de Minkowski assumiu o papel de abaixar/levantar índices tensoriais.
De fato:

Rναβµ = ηνλR
λ
αβµ =

1

2
ηνλη

γλ︸ ︷︷ ︸
δγν

(∂β∂αhγµ − ∂β∂γhαµ − ∂µ∂αhγβ + ∂µ∂γhαβ) ,

resultando em:
Rναβµ =

1

2
(∂β∂αhνµ − ∂β∂νhαµ − ∂µ∂αhνβ + ∂µ∂νhαβ) .

Essa é a expressão para o tensor de Riemann num regime de campo gravitacional fraco. En-
tretanto, ainda nos falta expressar o tensor e o escalar de Ricci, dado a seguir:

Rαµ = ηνβRναβµ, (C.0.7)

logo,

Rαµ =
1

2
ηνβ (∂β∂αhνµ − ∂β∂νhαµ − ∂µ∂αhνβ + ∂µ∂νhαβ) , (C.0.8)

ou ainda,

Rαµ =
1

2

(
∂β∂αh

β
µ −□hαµ − ∂µ∂αh+ ∂µ∂νhα

ν
)
, (C.0.9)

onde □ = ∂β∂β, e
h = ηνβhνβ ou h = hβ

β.

A partir de (C.0.9), podemos obter o escalar de Ricci R = ηαµRαµ,

R =
1

2
ηαµ

(
∂β∂αh

β
µ −□hαµ − ∂µ∂αh+ ∂µ∂νhα

ν
)
,

R =
1

2

(
∂β∂αh

βα −□h−□h+ ∂µ∂νh
µν
)
.

Fazendo uma mudança nos índices contraídos do primeiro termo, escrevemos:

R = ∂µ∂νh
µν −□h. (C.0.10)

Esse é o escalar de Ricci para o caso de um campo gravitacional fraco. Por meio das equações
(C.0.9) e (C.0.10), podemos construir o tensor de Einstein covariante. Substituindo (C.0.9) e
(C.0.10) nas equações de movimento de Einstein,

Gµν =
1

2

(
∂β∂νh

β
µ −□hνµ − ∂µ∂νh+ ∂µ∂γhν

γ
)
− 1

2
(ηµν + hµν)

(
∂ρ∂λh

ρλ −□h
)
,

=
1

2

(
∂β∂νh

β
µ −□hνµ − ∂µ∂νh+ ∂µ∂γhν

γ
)
− 1

2
ηµν
(
∂ρ∂λh

ρλ −□h
)
,

Gµν =
1

2

(
∂β∂νh

β
µ −□hνµ − ∂µ∂νh+ ∂µ∂γhν

γ − ηµν∂ρ∂λh
ρλ + ηµν□h

)
. (C.0.11)

Assim, as equações de Einstein em primeira ordem são:

∂β∂νh
β
µ −□hνµ − ∂µ∂νh+ ∂µ∂γhν

γ − ηµν∂ρ∂λh
ρλ + ηµν□h = 2κTµν . (C.0.12)
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APÊNDICE D

Cálculo da contração Sµν,κλS
κλ

,αβ

Temos

Sµν,κλS
κλ

,αβ =
∂σ

2
(ϵµσκθνλ + ϵµσλθνκ + ϵνσκθµλ + ϵνσλθµκ)×

∂ϖ

2

(
ϵκϖαθ

λ
β + ϵκϖβθ

λ
α + ϵλϖαθ

κ
β + ϵλϖβθ

κ
α

)
,

após desenvolver todos os produtos, vamos usar o seguinte resultado nas parcelas obtidas:

∂σϵµσκ∂
ϖϵκϖα = ∂σ∂ϖηαϖϵµσκϵ

κϖα

= ∂α∂λ − ∂σ∂σηαλ

= −□θαλ.

Após agrupar os termos semelhantes

Sµν,κλS
κλ

,αβ =
1

4
4 (−□θµβθνα −□θνβθµα) +

∂σ∂ϖ

4
4 (ϵµσβϵνϖα + ϵνσβϵµϖα) ,

= −2□
(
P (0−θ) + P (2)

)
+ ∂σ∂ϖ (ϵµσβϵνϖα + ϵνσβϵµϖα) ,

reescrevemos os produtos dos símbolos de Levi-Civita na segunda parcela, sob a forma

ϵµσβϵνϖα = ηµν (ησϖηαβ − ησαηβϖ)− ηµϖ (ησνηαβ − ησαηβν) + ηµα (ησνηϖβ − ησϖηβν) ,

o que permite expressar:

∂σ∂ϖ (ϵµσβϵνϖα + ϵνσβϵµϖα) = □ [2ηµνηαβ − 2 (ηµνωαβ + ωµνηαβ)

+ (ηβνωαµ + ωναηβµ + ηναωµβ + ωνβηµα)− (ηµαηνβ + ηανηµβ)] .

Por meio das identidades dos operadores da base de Barnes-Rivers, podemos escrever

∂σ∂ϖ (ϵµσβϵνϖα + ϵνσβϵµϖα) = □
[
2
(
2P (0−θ) + P (0−ω) + P (0−θω)

)
− 2

(
2P (0−ω) + P (0−θω)

)
+2
(
P (1) + P (0−ω)

)
+ 2

(
P (1) + P (0−ω)

)
− 2

(
P (0−θ) + P (0−ω) + P (1) + P (2)

)]
,

= □
(
2P (0−θ) − 2P (2)

)
.
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Substituindo, �nalmente resulta:

Sµν,κλS
κλ

,αβ = −2□
(
P (0−θ) + P (2)

)
+□

(
2P (0−θ) − 2P (2)

)
= −4□P (2).

Note que usamos ηµνηαβ = 2P (0−θ) +P (0−ω) +P (0−θω), ao invés de ηµνηαβ = 3P (0−θ) +P (0−ω) +
P (0−θω). Os números 3 e 2 destes resultados são apenas fatores relacionados à dimensão do
espaço-tempo trabalhado.
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APÊNDICE E
Cálculo das contrações da base estendida

Para Π̃
(2)
µν,κλ

Π̃
(2)
µν,κλP

(0−θ)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

1

3
θκλθαβ,

=
1

3
(θµκΛνλ + θνλΛµκ) θ

κλθαβ, (E.0.1)

=
1

3

(
θλµΛνλ + θκνΛµκ

)
, (E.0.2)

a contração θλµΛνλ pode ser simplesmente calculada

θλµΛνλ =
(
δλµ − ωλ

µ

)
bνbλ,

= bνbµ −
(b · p)
p2

pµbν ,

nos permitindo escrever

Π̃
(2)
µν,κλP

(0−θ)κλ
,αβ =

1

3

[
bνbµ −

(b · p)
p2

pµbν + bνbµ −
(b · p)
p2

pνbµ

]
θαβ,

Π̃
(2)
µν,κλP

(0−θ)κλ
,αβ =

1

3

[
2Λµν −

(b · p)
p2

Σ̃µν

]
θαβ,

Π̃
(2)
µν,κλP

(0−θ)κλ
,αβ =

2

3
Λµνθαβ −

(b · p)
3p2

Σ̃µνθαβ. (E.0.3)

P
(0−θ)
µν,κλ Π̃

(2)κλ
,αβ =

2

3
θµνΛαβ −

(b · p)
3p2

θµνΣ̃αβ.

O próximo é Π̃
(θΣ)
µν,κλ

Π̃
(θΣ)
µν,κλP

(0−θ)κλ
,αβ =

1√
3

(
Σ̃µνθκλ + Σ̃κλθµν

)
× 1

3
θκλθαβ, (E.0.4)

a contração Σ̃κλθ
κλ é nula, pois θκλpκ = 0,

Π̃
(θΣ)
µν,κλP

(0−θ)κλ
,αβ =

1√
3
Σ̃µνθαβ. (E.0.5)
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P
(0−θ)
µν,κλ Π̃

(θΣ)κλ
,αβ =

1√
3
θµνΣ̃αβ.

Contraindo com Π̃
(θΛ)
µν,κλ

Π̃
(θΛ)
µν,κλP

(0−θ)κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)×

1

3
θκλθαβ,

=
1

3
√
3

[
θµν

(
b2 − (b · p)2

p2

)
+ 3Λµν

]
θαβ,

=
1

3
√
3

(
b2 − (b · p)2

p2

)
θµνθαβ +

1√
3
θαβΛµν ,

Π̃
(θΛ)
µν,κλP

(0−θ)κλ
,αβ =

b2p2 − (b · p)2√
3p2

P
(0−θ)
µν,αβ +

1√
3
Λµνθαβ, (E.0.6)

onde usamos o resultado θκλΛκλ = b2 − (b · p)2⧸p2.

P
(0−θ)
µν,κλ Π̃

(θΛ)κλ
,αβ =

b2p2 − (b · p)2√
3p2

P
(0−θ)
µν,αβ +

1√
3
θµνΛαβ.

Prosseguiremos com o restante

Π̃
(ΛΛ)
µν,κλP

(0−θ)κλ
,αβ = ΛµνΛκλ ×

1

3
θκλθαβ,

=
b2p2 − (b · p)2

3p2
Λµνθαβ. (E.0.7)

P
(0−θ)
µν,κλ Π̃

(ΛΛ)κλ
,αβ =

b2p2 − (b · p)2

3p2
θµνΛαβ.

Π̃
(ωΛ−a)
µν,κλ P (0−θ)κλ

,αβ = (ωµκΛνλ + ωµλΛνκ + ωνκΛµλ + ωνλΛµκ)×
1

3
θκλθαβ = 0, (E.0.8)

pois θκλωµκ = 0.

Π̃
(ωΛ−b)
µν,κλ P (0−θ)κλ

,αβ = (ωµνΛκλ + ωκλΛµν)×
1

3
θκλθαβ,

=
b2p2 − (b · p)2

3p2
ωµνθαβ. (E.0.9)

P
(0−θ)
µν,κλ Π̃

(ωΛ−b)κλ
,αβ =

b2p2 − (b · p)2

3p2
θµνωαβ.

Π̃
(ωΣ)
µν,κλP

(0−θ)κλ
,αβ =

(
ωµνΣ̃κλ + ωκλΣ̃µν

)
× 1

3
θκλθαβ = 0. (E.0.10)

Π̃
(ΛΣ)
µν,κλP

(0−θ)κλ
,αβ =

(
ΛµνΣ̃κλ + ΛκλΣ̃µν

)
× 1

3
θκλθαβ,

=
b2p2 − (b · p)2

3p2
Σ̃µνθαβ. (E.0.11)
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P
(0−θ)
µν,κλ Π̃

(ΛΣ)κλ
,αβ =

b2p2 − (b · p)2

3p2
θµνΣ̃αβ.

Agora calcularemos as contrações de P
(1)
µν,αβ

Π̃
(1)
µν,κλP

(1)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

(E.0.12)

Π̃
(1)
µν,κλP

(1)κλ
,αβ =

1

4

[
θµκΣ̃νλ

(
θκαω

λ
β + θκβω

λ
α

)
+ θµλΣ̃νκ

(
θλαω

κ
β + θλβω

κ
α

)
+θνκΣ̃µλ

(
θκαω

λ
β + θκβω

λ
α

)
+ θνλΣ̃µκ

(
θλαω

κ
β + θλβω

κ
α

)]

Π̃
(1)
µν,κλP

(1)κλ
,αβ =

1

4

[
θµα

(
Σ̃νλω

λ
β + Σ̃νκω

κ
β

)
+ θµβ

(
Σ̃νλω

λ
α + Σ̃νκω

κ
α

)
+θνα

(
Σ̃µλω

λ
β + Σ̃µκω

κ
β

)
+ θνβ

(
Σ̃µλω

λ
α + Σ̃µκω

κ
α

)]
observe que

Σ̃νλω
λ
β + Σ̃νκω

κ
β = (bνpλ + bλpν)ω

λ
β + (bνpκ + bκpν)ω

κ
β,

= 2bνpβ + 2 (b · p)ωνβ,

assim,

Π̃
(1)
µν,κλP

(1)κλ
,αβ =

1

2
{θµα [bνpβ + (b · p)ωνβ] + θµβ [bνpα + (b · p)ωνα]

+θνα [bµpβ + (b · p)ωµβ] + θνβ [bµpα + (b · p)ωµα]}

Π̃
(1)
µν,κλP

(1)κλ
,αβ =

1

2
(b · p) (θµαωνβ + θµβωνα + θναωµβ + θνβωµα)

+
1

2
(θµαbνpβ + θµβbνpα + θναbµpβ + θνβbµpα) ,

a primeira parcela é P
(1)
µν,αβ e para a segunda iremos usar a notação da Ref. [38] bνpβ = Σνβ,

logo
Π̃

(1)
µν,κλP

(1)κλ
,αβ = (b · p)P (1)

µν,αβ+Π
(1−a)
µν,αβ, (E.0.13)

onde
Π̃

(1)
µν,αβ = Π

(1−a)
µν,αβ +Π

(1−b)
µν,αβ,

sendo

Π
(1−a)
µν,αβ =

1

2
(θµαbνpβ + θµβbνpα + θναbµpβ + θνβbµpα) , (E.0.14)

Π
(1−b)
µν,αβ =

1

2
(θµαbβpν + θµβbαpν + θναbβpµ + θνβbαpµ) . (E.0.15)

P
(1)
µν,κλΠ̃

(1)κλ
,αβ = (b · p)P (1)

µν,αβ+Π
(1−b)
µν,αβ.
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Π̃
(2)
µν,κλP

(1)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

=
1

2

[
θµκΛνλ

(
θκαω

λ
β + θκβω

λ
α

)
+ θνκΛµλ

(
θκαω

λ
β + θκβω

λ
α

)]
,

=
1

2

[
(θµαbνpβ + θµβbνpα)

(b · p)
p2

+ (θναbµpβ + θνβbµpα)
(b · p)
p2

]
,

=
1

2
(θµαbνpβ + θµβbνpα + θναbµpβ + θνβbµpα)

(b · p)
p2

,

Π̃
(2)
µν,κλP

(1)κλ
,αβ =

(b · p)
p2

Π
(1−a)
µν,αβ. (E.0.16)

P
(1)
µν,κλΠ̃

(2)κλ
,αβ =

(b · p)
p2

Π
(1−b)
µν,αβ.

Π̃
(θΣ)
µν,κλP

(1)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
× 1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

=
1

2
√
3
θµνΣ̃κλ

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

=
1√
3
θµν

(
Σ̃κλθ

κ
αω

λ
β + Σ̃κλθ

κ
βω

λ
α

)
, (E.0.17)

Σ̃κλθ
κ
αω

λ
β = (bνpλ + bλpν) θ

κ
αω

λ
β

= bαpλω
λ
β − (b · p)ωαλω

λ
β,

= bαpβ − (b · p)ωαβ,

Π̃
(θΣ)
µν,κλP

(1)κλ
,αβ =

1√
3
θµν [bαpβ + bβpα − 2 (b · p)ωαβ] ,

=
1√
3
θµνΣ̃αβ −

2√
3
(b · p) θµνωαβ. (E.0.18)

P
(1)
µν,κλΠ̃

(θΣ)κλ
,αβ =

1√
3
Σ̃µνθαβ −

2√
3
(b · p)ωµνθαβ.

Π̃
(θΛ)
µν,κλP

(1)κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)×

1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

=
1

2
√
3
θµνΛκλ

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

=
1√
3
θµν (bαpβ + bβpα − (b · p)ωαβ − (b · p)ωαβ)

(b · p)
p2

,

=
(b · p)√
3p2

θµνΣ̃αβ − 2
(b · p)2√

3p2
θµνωαβ. (E.0.19)

P
(1)
µν,κλΠ̃

(θΛ)κλ
,αβ =

(b · p)√
3p2

Σ̃µνθαβ − 2
(b · p)2√

3p2
ωµνθαβ.
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Π̃
(ΛΛ)
µν,κλP

(1)κλ
,αβ = ΛµνΛκλ ×

1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

= Λµν

(
Λκλθ

κ
αω

λ
β + Λκλθ

κ
βω

λ
α

)
,

= Λµν (bαpβ − (b · p)ωαβ + bβpα − (b · p)ωαβ)
(b · p)
p2

,

=
(b · p)
p2

ΛµνΣ̃αβ − 2
(b · p)2

p2
Λµνωαβ. (E.0.20)

P
(1)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

(b · p)
p2

Σ̃µνΛαβ − 2
(b · p)2

p2
ωµνΛαβ.

Π̃
(ωΛ−a)
µν,κλ P (1)κλ

,αβ = (ωµκΛνλ + ωµλΛνκ + ωνκΛµλ + ωνλΛµκ)×
1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

Π̃
(ωΛ−a)
µν,κλ P (1)κλ

,αβ = Λνλθ
λ
αωµβ + Λνλθ

λ
βωµα + Λµλθ

λ
αωνβ + Λµλθ

λ
βωνα,

Π̃
(ωΛ−a)
µν,κλ P (1)κλ

,αβ = bνbαωµβ + bνbβωµα + bµbαωνβ + bµbβωνα

− (bνpαωµβ + bνpβωµα + bµpαωνβ + bµpβωνα)
(b · p)
p2

, (E.0.21)

Π̃
(ωΛ−a)
µν,κλ P (1)κλ

,αβ = Π̃
(ωΛ−a)
µν,αβ − 2

(b · p)
p2

Σ̃µνωαβ. (E.0.22)

P
(1)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ = Π̃

(ωΛ−a)
µν,αβ − 2

(b · p)
p2

ωµνΣ̃αβ. (E.0.23)

Π̃
(ωΛ−b)
µν,κλ P (1)κλ

,αβ = (ωµνΛκλ + ωκλΛµν)×
1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

=
1

2

(
ωµνΛκλθ

κ
αω

λ
β + ωµνΛκλθ

λ
αω

κ
β + ωµνΛκλθ

κ
βω

λ
α + ωµνΛκλθ

λ
βω

κ
α

)
,

= ωµνΛκλθ
κ
αω

λ
β + ωµνΛκλθ

κ
βω

λ
α,

= ωµν

(
(b · p)
p2

bαpβ −
(b · p)2

p2
ωαβ +

(b · p)
p2

bβpα − (b · p)2

p2
ωαβ

)
,

= ωµν (bαpβ + bβpα)
(b · p)
p2

− 2 (b · p)2

p2
ωαβωµν ,

Π̃
(ωΛ−b)
µν,κλ P (1)κλ

,αβ =
(b · p)
p2

ωµνΣ̃αβ −
2 (b · p)2

p2
P

(0−ω)
µν,αβ . (E.0.24)

P
(1)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ =

(b · p)
p2

Σ̃µνωαβ −
2 (b · p)2

p2
P

(0−ω)
µν,αβ .
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Π̃
(ωΣ)
µν,κλP

(1)κλ
,αβ =

(
ωµνΣ̃κλ + ωκλΣ̃µν

)
× 1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
,

=
1

2
ωµνΣ̃κλ

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
= ωµν

(
Σ̃κλθ

κ
αω

λ
β + Σ̃κλθ

κ
βω

λ
α

)
,

= ωµν [bαpβ − (b · p)ωαβ + bβpα − (b · p)ωαβ] ,

= Σ̃αβωµν − 2 (b · p)ωαβωµν ,

= ωµνΣ̃αβ − 2 (b · p)P (0−ω)
µν,αβ . (E.0.25)

P
(1)
µν,κλΠ̃

(ωΣ)κλ
,αβ = Σ̃µνωαβ − 2 (b · p)P (0−ω)

µν,αβ .

Π̃
(ΛΣ)
µν,κλP

(1)κλ
,αβ =

(
ΛµνΣ̃κλ + ΛκλΣ̃µν

)
× 1

2

(
θκαω

λ
β + θλαω

κ
β + θκβω

λ
α + θλβω

κ
α

)
, (E.0.26)

Π̃
(ΛΣ)
µν,κλP

(1)κλ
,αβ = Λµν (bαpβ − (b · p)ωαβ + bβpα − (b · p)ωαβ)

+ Σ̃µν

(
(b · p)
p2

bαpβ −
(b · p)2

p2
ωαβ +

(b · p)
p2

bβpα − (b · p)2

p2
ωαβ

)
,

Π̃
(ΛΣ)
µν,κλP

(1)κλ
,αβ = ΛµνΣ̃αβ − 2 (b · p)ωαβΛµν +

(b · p)
p2

Σ̃αβΣ̃µν −
2 (b · p)2

p2
ωαβΣ̃µν ,

= ΛµνΣ̃αβ − 2 (b · p) Λµνωαβ + (b · p) Π̃(ωΛ−a)
µν,αβ − 2 (b · p)2

p2
Σ̃µνωαβ. (E.0.27)

P
(1)
µν,κλΠ̃

(ΛΣ)κλ
,αβ = Σ̃µνΛαβ − 2 (b · p)ωµνΛαβ + (b · p) Π̃(ωΛ−a)

µν,αβ − 2 (b · p)2

p2
ωµνΣ̃αβ.

O terceiro projetor é P
(2)
µν,αβ

Π̃
(1)
µν,κλP

(2)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×
[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
(E.0.28)

note que

Σ̃νλθ
λ
β = (bνpλ + bλpν) θ

λ
β

= bλpν
(
ηλβ − ωλ

β

)
,

= bβpν − (b · p)ωνβ

Portanto,

Π̃
(1)
µν,κλP

(2)κλ
,αβ =

1

2
[θµα (bβpν − (b · p)ωνβ) + 2θµβ (bαpν − (b · p)ωνα)

+2θνα (bβpµ − (b · p)ωµβ) + 2θνβ (bαpµ − (b · p)ωµα)]

− 1

6
[2 (bµpν − (b · p)ωµν) + 2 (bνpµ − (b · p)ωµν)] θαβ,
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Π̃
(1)
µν,κλP

(2)κλ
,αβ =

1

2
(θµαbβpν + θµβbαpν + θναbβpµ + θνβbαpµ)

− 1

2
(b · p) (ωνβθµα + ωναθµβ + ωµβθνα + ωµαθνβ)

− 1

3
[θαβbµpν + θαβbνpµ − (b · p) (ωµνθαβ + ωµνθαβ)] ,

Π̃
(1)
µν,κλP

(2)κλ
,αβ =

1

2
(θµαbβpν + θµβbαpν + θναbβpµ + θνβbαpµ)

− 1

2
(b · p) (ωνβθµα + ωναθµβ + ωµβθνα + ωµαθνβ)

− 1

3
[(bµpν + bνpµ) θαβ − 2 (b · p)ωµνθαβ] ,

Π̃
(1)
µν,κλP

(2)κλ
,αβ = Π

(1−b)
µν,αβ − (b · p)P (1)

µν,αβ −
1

3
Σ̃µνθαβ +

2

3
(b · p)ωµνθαβ. (E.0.29)

P
(2)
µν,κλΠ̃

(1)κλ
,αβ = Π

(1−a)
µν,αβ − (b · p)P (1)

µν,αβ −
1

3
θµνΣ̃αβ +

2

3
(b · p) θµνωαβ.

Π̃
(2)
µν,κλP

(2)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
,

(E.0.30)

Π̃
(2)
µν,κλP

(2)κλ
,αβ =

1

2

[
θµα

(
bνbβ −

(b · p)
p2

bνpβ

)
+ θµβ

(
bνbα − (b · p)

p2
bνpα

)
+ θνα

(
bµbβ −

(b · p)
p2

bµpβ

)
+ θνβ

(
bµbα − (b · p)

p2
bµpα

)]
− 1

3

[(
bνbµ −

(b · p)
p2

bνpµ

)
θαβ +

(
bνbµ −

(b · p)
p2

bµpν

)
θαβ

]
,

Π̃
(2)
µν,κλP

(2)κλ
,αβ =

1

2
(θµαbνbβ + θναbµbβ + θµβbνbα + θνβbµbα)

− (b · p)
2p2

(bνpβθµα + bνpαθµβ + bµpβθνα + bµpαθνβ)

− 1

3
(bνbµ + bνbµ) θαβ +

(b · p)
3p2

(bνpµ + bµpν) θαβ,

Π̃
(2)
µν,κλP

(2)κλ
,αβ = Π̃

(2)
µν,αβ −

(b · p)
p2

Π
(1−a)
µν,αβ −

2

3
Λµνθαβ +

(b · p)
3p2

Σ̃µνθαβ. (E.0.31)

P
(2)
µν,κλΠ̃

(2)κλ
,αβ = Π̃

(2)
µν,αβ −

(b · p)
p2

Π
(1−b)
µν,αβ −

2

3
θµνΛαβ +

(b · p)
3p2

θµνΣ̃αβ.

Π̃
(θΣ)
µν,κλP

(2)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
×
[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
,

Π̃
(θΣ)
µν,κλP

(2)κλ
,αβ =

1√
3
θµνΣ̃κλ

[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
+

1√
3
θκλΣ̃µν

[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
,
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Π̃
(θΣ)
µν,κλP

(2)κλ
,αβ =

1

2
√
3
θκλΣ̃µν

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
√
3
θκλΣ̃µνθ

κλθαβ,

=
1√
3
Σ̃µνθαβ −

1√
3
Σ̃µνθαβ = 0. (E.0.32)

Π̃
(θΛ)
µν,κλP

(2)κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)×

[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
, (E.0.33)

Π̃
(θΛ)
µν,κλP

(2)κλ
,αβ =

1√
3
θµνΛκλ

[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
+

1√
3
θκλΛµν

[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
, (E.0.34)

Π̃
(θΛ)
µν,κλP

(2)κλ
,αβ =

1√
3
θµνΛκλθ

κ
αθ

λ
β −

1

3
√
3
θµνΛκλθ

κλθαβ +
1√
3
θκλΛµνθ

κ
αθ

λ
β −

1√
3
Λµνθαβ,

(E.0.35)

Π̃
(θΛ)
µν,κλP

(2)κλ
,αβ =

1√
3
bαbβθµν −

(b · p)√
3p2

Σ̃αβθµν +
(b · p)2√

3p2
ωαβθµν

− 1

3
√
3
θµνθαβ

[
b2 − (b · p)2

p2

]
+

1√
3
Λµνθαβ −

1√
3
Λµνθαβ, (E.0.36)

Π̃
(θΛ)
µν,κλP

(2)κλ
,αβ =

1√
3
θµνΛαβ −

(b · p)√
3p2

θµνΣ̃αβ +
(b · p)2√

3p2
θµνωαβ −

b2p2 − (b · p)2√
3p2

P
(0−θ)
µν,αβ .

P
(2)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1√
3
Λµνθαβ −

(b · p)√
3p2

Σ̃µνθαβ +
(b · p)2√

3p2
ωµνθαβ −

b2p2 − (b · p)2√
3p2

P
(0−θ)
µν,αβ .

Π̃
(ΛΛ)
µν,κλP

(2)κλ
,αβ = ΛµνΛκλ ×

[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
,

=
1

2
Λκλ

(
θκαθ

λ
β + θλαθ

κ
β

)
Λµν −

1

3
Λκλθ

κλΛµνθαβ,

= Λκλθ
κ
αθ

λ
βΛµν −

b2p2 − (b · p)2

3p2
Λµνθαβ

= ΛµνΛαβ −
(b · p)
p2

ΛµνΣ̃αβ +
(b · p)2

p2
Λµνωαβ −

b2p2 − (b · p)2

3p2
Λµνθαβ,

= Π̃
(ΛΛ)
µν,αβ −

(b · p)
p2

ΛµνΣ̃αβ +
(b · p)2

p2
Λµνωαβ −

b2p2 − (b · p)2

3p2
Λµνθαβ. (E.0.37)

P
(2)
µν,κλΠ̃

(ΛΛ)κλ
,αβ = Π̃

(ΛΛ)
µν,αβ −

(b · p)
p2

Σ̃µνΛαβ +
(b · p)2

p2
ωµνΛαβ −

b2p2 − (b · p)2

3p2
θµνΛαβ.

Π̃
(ωΛ−a)
µν,κλ P (2)κλ

,αβ = (ωµκΛνλ + ωµλΛνκ + ωνκΛµλ + ωνλΛµκ)×
[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
,

= 0.
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Π̃
(ωΛ−b)
µν,κλ P (2)κλ

,αβ = (ωµνΛκλ + ωκλΛµν)×
[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
,

=
1

2
ωµνΛκλ

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
ωµνΛκλθ

κλθαβ,

= ωµνΛκλθ
κ
αθ

λ
β −

b2p2 − (b · p)2

3p2
ωµνθαβ,

= ωµνΛαβ −
(b · p)
p2

ωµνΣ̃αβ +
(b · p)2

p2
ωµνωαβ −

b2p2 − (b · p)2

3p2
ωµνθαβ,

= ωµνΛαβ −
(b · p)
p2

ωµνΣ̃αβ +
(b · p)2

p2
P

(0−ω)
µν,αβ − b2p2 − (b · p)2

3p2
ωµνθαβ.

P
(2)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ = Λµνωαβ −

(b · p)
p2

Σ̃µνωαβ +
(b · p)2

p2
P

(0−ω)
µν,αβ − b2p2 − (b · p)2

3p2
θµνωαβ.

Π̃
(ωΣ)
µν,κλP

(2)κλ
,αβ =

(
ωµνΣ̃κλ + ωκλΣ̃µν

)
×
[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
,

= 0. (E.0.38)

Π̃
(ΛΣ)
µν,κλP

(2)κλ
,αβ =

(
ΛµνΣ̃κλ + ΛκλΣ̃µν

)
×
[
1

2

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
θκλθαβ

]
,

=
1

2
ΛκλΣ̃µν

(
θκαθ

λ
β + θλαθ

κ
β

)
− 1

3
ΛκλΣ̃µνθ

κλθαβ,

= Σ̃µνΛκλθ
κ
αθ

λ
β −

b2p2 − (b · p)2

3p2
Σ̃µνθαβ,

= Σ̃µνΛαβ −
(b · p)
p2

Σ̃µνΣ̃αβ +
(b · p)2

p2
Σ̃µνωαβ −

b2p2 − (b · p)2

3p2
Σ̃µνθαβ,

= Σ̃µνΛαβ − (b · p) Π̃(ωΛ−a)
µν,αβ +

(b · p)2

p2
Σ̃µνωαβ −

b2p2 − (b · p)2

3p2
Σ̃µνθαβ. (E.0.39)

P
(2)
µν,κλΠ̃

(ΛΣ)κλ
,αβ = ΛµνΣ̃αβ − (b · p) Π̃(ωΛ−a)

µν,αβ +
(b · p)2

p2
ωµνΣ̃αβ −

b2p2 − (b · p)2

3p2
θµνΣ̃αβ.

Para P
(0−ω)
µν,αβ :

Π̃
(1)
µν,κλP

(0−ω)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
× ωκλωαβ,

= 0. (E.0.40)

Π̃
(2)
µν,κλP

(0−ω)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)× ωκλωαβ,

= 0. (E.0.41)
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Π̃
(θΣ)
µν,κλP

(0−ω)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
× ωκλωαβ,

=
1√
3
θµνΣ̃κλω

κλωαβ,

=
2√
3
(b · p) θµνωαβ. (E.0.42)

P
(0−ω)
µν,κλ Π̃(θΣ)κλ

,αβ =
2√
3
(b · p)ωµνθαβ.

Π̃
(θΛ)
µν,κλP

(0−ω)κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)× ωκλωαβ,

=
1√
3
θµνΛκλω

κλωαβ,

=
(b · p)2√

3p2
θµνωαβ. (E.0.43)

P
(0−ω)
µν,κλ Π̃(θΛ)κλ

,αβ =
(b · p)2√

3p2
ωµνθαβ.

Π̃
(ΛΛ)
µν,κλP

(0−ω)κλ
,αβ = ΛµνΛκλ × ωκλωαβ,

=
(b · p)2

p2
Λµνωαβ. (E.0.44)

P
(0−ω)
µν,κλ Π̃(ΛΛ)κλ

,αβ =
(b · p)2

p2
ωµνΛαβ.

Π̃
(ωΛ−a)
µν,κλ P (0−ω)κλ

,αβ = (ωµκΛνλ + ωµλΛνκ + ωνκΛµλ + ωνλΛµκ)× ωκλωαβ,

=
(
ωλ

µΛνλ + ωκ
µΛνκ + ωλ

νΛµλ + ωκ
νΛµκ

)
ωαβ,

= 2
(
ωλ

µΛνλ + ωκ
νΛµκ

)
ωαβ,

=
2 (b · p)

p2
(bµpν + bνpµ)ωαβ,

=
2 (b · p)

p2
Σ̃µνωαβ. (E.0.45)

P
(0−ω)
µν,κλ Π̃(ωΛ−a)κλ

,αβ =
2 (b · p)

p2
ωµνΣ̃αβ.

Π̃
(ωΛ−b)
µν,κλ P (0−ω)κλ

,αβ = (ωµνΛκλ + ωκλΛµν)× ωκλωαβ,

= ωµνΛκλω
κλωαβ + ωκλω

κλΛµνωαβ,

=
(b · p)2

p2
ωµνωαβ + Λµνωαβ,

=
(b · p)2

p2
P

(0−ω)
µν,αβ + Λµνωαβ. (E.0.46)
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P
(0−ω)
µν,κλ Π̃(ωΛ−b)κλ

,αβ =
(b · p)2

p2
P

(0−ω)
µν,αβ + ωµνΛαβ

Π̃
(ωΣ)
µν,κλP

(0−ω)κλ
,αβ =

(
ωµνΣ̃κλ + ωκλΣ̃µν

)
× ωκλωαβ,

= Σ̃κλω
κλωµνωαβ + Σ̃µνωαβ,

= 2 (b · p)ωµνωαβ + Σ̃µνωαβ,

= 2 (b · p)P (0−ω)
µν,αβ + Σ̃µνωαβ. (E.0.47)

P
(0−ω)
µν,κλ Π̃(ωΣ)κλ

,αβ = 2 (b · p)P (0−ω)
µν,αβ + ωµνΣ̃αβ.

Π̃
(ΛΣ)
µν,κλP

(0−ω)κλ
,αβ =

(
ΛµνΣ̃κλ + ΛκλΣ̃µν

)
× ωκλωαβ,

= 2 (b · p) Λµνωαβ +
(b · p)2

p2
Σ̃µνωαβ. (E.0.48)

P
(0−ω)
µν,κλ Π̃(ΛΣ)κλ

,αβ = 2 (b · p)ωµνΛαβ +
(b · p)2

p2
ωµνΣ̃αβ.

Prosseguimos com P
(0−θω)
µν,αβ

Π̃
(1)
µν,κλP

(0−θω)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
× 1√

3

(
θαβω

κλ + θκλωαβ

)
,

(E.0.49)

Π̃
(1)
µν,κλP

(0−θω)κλ
,αβ =

1

2
√
3

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
θκλωαβ,

note que esse resultado deve ser análogo à Π̃
(1)
µν,κλP

(0−θ)κλ
,αβ,

Π̃
(1)
µν,κλP

(0−θω)κλ
,αβ =

1√
3
Σ̃µνωαβ − 2 (b · p)ωµνωαβ,

=
1√
3
Σ̃µνωαβ −

2√
3
(b · p)P (0−ω)

µν,αβ . (E.0.50)

P
(0−θω)
µν,κλ Π̃(1)κλ

,αβ =
1√
3
ωµνΣ̃αβ −

2√
3
(b · p)P (0−ω)

µν,αβ .

Π̃
(2)
µν,κλP

(0−θω)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

1√
3

(
θαβω

κλ + θκλωαβ

)
,

=
1

2
√
3
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ) θ

κλωαβ,

=
1√
3

(
θλµΛνλ + θκνΛµκ

)
ωαβ,

=
1√
3

[
Λµν −

(b · p)
p2

bνpµ + Λµν −
(b · p)
p2

bµpν

]
ωαβ,

=
1√
3

[
2Λµν −

(b · p)
p2

(bνpµ + bµpν)

]
ωαβ,

=
2√
3
Λµνωαβ −

(b · p)√
3p2

Σ̃µνωαβ. (E.0.51)
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P
(0−θω)
µν,κλ Π̃(2)κλ

,αβ =
2√
3
ωµνΛαβ −

(b · p)√
3p2

ωµνΣ̃αβ.

Π̃
(θΣ)
µν,κλP

(0−θω)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
× 1√

3

(
θαβω

κλ + θκλωαβ

)
,

=
1

3

(
θµνθαβΣ̃κλω

κλ + θκλθ
κλΣ̃µνωαβ

)
,

=
2

3
(b · p) θµνθαβ + Σ̃µνωαβ,

= 2 (b · p)P (0−θ)
µν,αβ + Σ̃µνωαβ. (E.0.52)

P
(0−θω)
µν,κλ Π̃(θΣ)κλ

,αβ = 2 (b · p)P (0−θ)
µν,αβ + ωµνΣ̃αβ.

Π̃
(θΛ)
µν,κλP

(0−θω)κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)×

1√
3

(
θαβω

κλ + θκλωαβ

)
,

=
1

3
θµνθαβΛκλω

κλ +
1

3
θµνΛκλθ

κλωαβ + Λµνωαβ,

=
(b · p)2

3p2
θµνθαβ +

1

3

(
b2 − (b · p)2

p2

)
θµνωαβ + Λµνωαβ,

=
(b · p)2

p2
P

(0−θ)
µν,αβ +

b2p2 − (b · p)2

3p2
θµνωαβ + Λµνωαβ. (E.0.53)

P
(0−θω)
µν,κλ Π̃(θΛ)κλ

,αβ =
(b · p)2

p2
P

(0−θ)
µν,αβ +

b2p2 − (b · p)2

3p2
ωµνθαβ + ωµνΛαβ.

Π̃
(ΛΛ)
µν,κλP

(0−θω)κλ
,αβ = ΛµνΛκλ ×

1√
3

(
θαβω

κλ + θκλωαβ

)
.

=
1√
3
ΛµνθαβΛκλω

κλ +
1√
3
ΛµνωαβΛκλθ

κλ,

=
(b · p)2√

3p2
Λµνθαβ +

b2p2 − (b · p)2√
3p2

Λµνωαβ. (E.0.54)

P
(0−θω)
µν,κλ Π̃(ΛΛ)κλ

,αβ =
(b · p)2√

3p2
θµνΛαβ +

b2p2 − (b · p)2√
3p2

ωµνΛαβ.

Π̃
(ωΛ−a)
µν,κλ P (0−θω)κλ

,αβ = (ωµκΛνλ + ωµλΛνκ + ωνκΛµλ + ωνλΛµκ)×
1√
3

(
θαβω

κλ + θκλωαβ

)
,

=
1√
3
(ωµκΛνλ + ωµλΛνκ + ωνκΛµλ + ωνλΛµκ) θαβω

κλ,

=
2√
3

(
ωλ

µΛνλ + ωκ
νΛµκ

)
θαβ,

=
2 (b · p)√

3p2
(bνpµ + bµpν) θαβ,

=
2 (b · p)√

3p2
Σ̃µνθαβ. (E.0.55)
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P
(0−θω)
µν,κλ Π̃(ωΛ−a)κλ

,αβ =
2 (b · p)√

3p2
θµνΣ̃αβ.

Π̃
(ωΛ−b)
µν,κλ P (0−θω)κλ

,αβ = (ωµνΛκλ + ωκλΛµν)×
1√
3

(
θαβω

κλ + θκλωαβ

)
,

=
1√
3
ωµνθαβΛκλω

κλ +
1√
3
ωµνΛκλθ

κλωαβ +
1√
3
ωκλω

κλΛµνθαβ,

=
(b · p)2√

3p2
ωµνθαβ +

b2p2 − (b · p)2√
3p2

ωµνωαβ +
1√
3
Λµνθαβ,

=
(b · p)2√

3p2
ωµνθαβ +

b2p2 − (b · p)2√
3p2

P
(0−ω)
µν,αβ +

1√
3
Λµνθαβ. (E.0.56)

P
(0−θω)
µν,κλ Π̃(ωΛ−b)κλ

,αβ =
(b · p)2√

3p2
θµνωαβ +

b2p2 − (b · p)2√
3p2

P
(0−ω)
µν,αβ +

1√
3
θµνΛαβ.

Π̃
(ωΣ)
µν,κλP

(0−θω)κλ
,αβ =

(
ωµνΣ̃κλ + ωκλΣ̃µν

)
× 1√

3

(
θαβω

κλ + θκλωαβ

)
,

=
1√
3
ωµνΣ̃κλθαβω

κλ +
1√
3
ωµνΣ̃κλθ

κλωαβ +
1√
3
ωκλΣ̃µνθαβω

κλ,

=
2√
3
(b · p)ωµνθαβ +

1√
3
Σ̃µνθαβ. (E.0.57)

P
(0−θω)
µν,κλ Π̃(ωΣ)κλ

,αβ =
2√
3
(b · p) θµνωαβ +

1√
3
θµνΣ̃αβ.

Π̃
(ΛΣ)
µν,κλP

(0−θω)κλ
,αβ =

(
ΛµνΣ̃κλ + ΛκλΣ̃µν

)
× 1√

3

(
θαβω

κλ + θκλωαβ

)
,

=
1√
3
ΛµνθαβΣ̃κλω

κλ +
1√
3
Σ̃µνθαβΛκλω

κλ +
1√
3
Λκλθ

κλΣ̃µνωαβ,

=
2√
3
(b · p) Λµνθαβ +

(b · p)2√
3p2

Σ̃µνθαβ +
b2p2 − (b · p)2√

3p2
Σ̃µνωαβ. (E.0.58)

P
(0−θω)
µν,κλ Π̃(ΛΣ)κλ

,αβ =
2√
3
(b · p) θµνΛαβ +

(b · p)2√
3p2

θµνΣ̃αβ +
b2p2 − (b · p)2√

3p2
ωµνΣ̃αβ.

Agora, apresentaremos as contrações que envolvem Π̃
(1)
µν,κλ

Π̃
(1)
µν,κλΠ̃

(1)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×1

2

(
θκαΣ̃

λ
β + θλαΣ̃

κ
β + θκβΣ̃

λ
α + θλβΣ̃

κ
α

)
,

(E.0.59)
assim,

Π̃
(1)
µν,κλΠ̃

(1)κλ
,αβ =

1

2

(
θµκθ

κ
αΣ̃νλΣ̃

λ
β + θµκΣ̃νλθ

λ
αΣ̃

κ
β + θµκΣ̃νλθ

κ
βΣ̃

λ
α + θµκΣ̃νλθ

λ
βΣ̃

κ
α

+θνκΣ̃µλθ
κ
αΣ̃

λ
β + θνκΣ̃µλθ

λ
αΣ̃

κ
β + θνκΣ̃µλθ

κ
βΣ̃

λ
α + θνκΣ̃µλθ

λ
βΣ̃

κ
α

)
,
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observe que

Σ̃νλΣ̃
λ
β = (bνpλ + bλpν)

(
bβp

λ + bλpβ
)
,

= p2bνbβ + (b · p) (bνpβ + bβpν) + b2pνpβ,

= p2Λνβ + (b · p) Σ̃νβ + b2p2ωνβ,

então

Π̃
(1)
µν,κλΠ̃

(1)κλ
,αβ =

1

2

[
θµα

(
p2Λνβ + (b · p) Σ̃νβ + b2p2ωνβ

)
+ (bµpβ − (b · p)ωµβ) (bαpν − (b · p)ωνα)

+ θµβ

(
p2Λνα + (b · p) Σ̃να + b2p2ωνα

)
+ (bµpα − (b · p)ωαµ) (bβpν − (b · p)ωνβ)

+ θνα

(
p2Λµβ + (b · p) Σ̃µβ + b2p2ωµβ

)
+ (bνpβ − (b · p)ωνβ) (bαpµ − (b · p)ωµα)

+θνβ

(
p2Λµα + (b · p) Σ̃µα + b2p2ωµα

)
+ (bνpα − (b · p)ωαν) (bβpµ − (b · p)ωµβ)

]
,

Π̃
(1)
µν,κλΠ̃

(1)κλ
,αβ =

1

2

[
θµα

(
p2Λνβ + (b · p) Σ̃νβ + b2p2ωνβ

)
+ θµβ

(
p2Λνα + (b · p) Σ̃να + b2p2ωνα

)
+ θνβ

(
p2Λµα + (b · p) Σ̃µα + b2p2ωµα

)
+ θνα

(
p2Λµβ + (b · p) Σ̃µβ + b2p2ωµβ

)
+ (bµpβ − (b · p)ωµβ) (bαpν − (b · p)ωνα) + (bµpα − (b · p)ωαµ) (bβpν − (b · p)ωνβ)

+ (bνpβ − (b · p)ωνβ) (bαpµ − (b · p)ωµα) + (bνpα − (b · p)ωαν) (bβpµ − (b · p)ωµβ)] ,

desenvolvendo e agrupando, resulta

Π̃
(1)
µν,κλΠ̃

(1)κλ
,αβ =

1

2

[
p2 (ωµαΛνβ + ωµβΛνα + ωναΛµβ + ωνβΛµα)

− (b · p)
(
ωµαΣ̃νβ + ωµβΣ̃να + ωναΣ̃µβ + ωνβΣ̃µα

)
+ 4 (b · p)2 ωµνωαβ + p2 (θµαΛνβ + θµβΛνα + θναΛµβ + θνβΛµα)

+
(
θµαΣ̃νβ + θµβΣ̃να + θναΣ̃µβ + θνβΣ̃µα

)
+b2p2 (ωµαθνβ + ωµβθνα + ωναθµβ + ωνβθµα)

]
,

identi�camos

Π̃
(1)
µν,κλΠ̃

(1)κλ
,αβ =

1

2
p2Π̃

(ωΛ−a)
µν,αβ −(b · p) Π̃(ωΣ)

µν,αβ+2 (b · p)2 P (0−ω)
µν,αβ +p2Π̃

(2)
µν,αβ+(b · p) Π̃(1)

µν,αβ+b2p2P
(1)
µν,αβ.

(E.0.60)

Π̃
(1)
µν,κλΠ̃

(2)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×1

2

(
θκαΛ

λ
β + θλαΛ

κ
β + θκβΛ

λ
α + θλβΛ

κ
α

)
,

(E.0.61)

Π̃
(1)
µν,κλΠ̃

(2)κλ
,αβ =

1

2

[
θµκΣ̃νλ

(
θκαΛ

λ
β + θλαΛ

κ
β + θκβΛ

λ
α + θλβΛ

κ
α

)
+ θνκΣ̃µλ

(
θκαΛ

λ
β + θλαΛ

κ
β + θκβΛ

λ
α + θλβΛ

κ
α

)]
,
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Π̃
(1)
µν,κλΠ̃

(2)κλ
,αβ =

1

2

(
θµαΣ̃νλΛ

λ
β + θµκΛ

κ
βΣ̃νλθ

λ
α + θµβΣ̃νλΛ

λ
α + θµκΛ

κ
αΣ̃νλθ

λ
β

+θναΣ̃µλΛ
λ
β + θνκΛ

κ
βΣ̃µλθ

λ
α + θνβΣ̃µλΛ

λ
α + θνκΛ

κ
αΣ̃µλθ

λ
β

)
,

calculando a contração Σ̃νλΛ
λ
β,

Σ̃νλΛ
λ
β = (bνpλ + bλpν) b

λbβ,

= (b · p) bνbβ + b2pνbβ,

= (b · p) Λνβ + b2bβpν ,

Π̃
(1)
µν,κλΠ̃

(2)κλ
,αβ =

1

2

[
θµα
(
(b · p) Λνβ + b2bβpν

)
+

(
Λµβ −

(b · p)
p2

bβpµ

)
(pνbα − (b · p)ωνα)

+ θµβ
(
(b · p) Λνα + b2bαpν

)
+

(
Λµα − (b · p)

p2
bαpµ

)
(pνbβ − (b · p)ωνβ)

+ θνα
(
(b · p) Λµβ + b2bβpµ

)
+

(
Λνβ −

(b · p)
p2

bβpν

)
(pµbα − (b · p)ωµα)

+θνβ
(
(b · p) Λµα + b2bαpµ

)
+

(
Λνα − (b · p)

p2
bαpν

)
(pµbβ − (b · p)ωµβ)

]
,

desenvolvendo e agrupando os termos convenientemente, temos

Π̃
(1)
µν,κλΠ̃

(2)κλ
,αβ =

1

2
[(θµαΛνβ + θµβΛνα + θναΛµβ + θνβΛµα) (b · p)

+ b2 (θµαbβpν + θµβbαpν + θναbβpµ + θνβbαpµ)

+ (Λµαbβpν + Λµβbαpν + Λναbβpµ + Λνβbαpµ)

− (b · p) (ωµαΛνβ + ωµβΛνα + ωναΛµβ + ωνβΛµα)

−4 (b · p)
p2

Λαβωµνp
2 +

2 (b · p)2

p2
Σ̃αβωµν

]
,

Π̃
(1)
µν,κλΠ̃

(2)κλ
,αβ = (b · p) Π̃(2)

µν,αβ+b2Π
(1−b)
µν,αβ+Σ̃µνΛαβ−

1

2
(b · p) Π̃(ωΛ−a)

µν,αβ −2 (b · p)ωµνΛαβ+
(b · p)2

p2
ωµνΣ̃αβ.

(E.0.62)

Π̃
(2)
µν,κλΠ̃

(1)κλ
,αβ = (b · p) Π̃(2)

µν,αβ+b2Π
(1−a)
µν,αβ+ΛµνΣ̃αβ−

1

2
(b · p) Π̃(ωΛ−a)

µν,αβ −2 (b · p) Λµνωαβ+
(b · p)2

p2
Σ̃µνωαβ.

Π̃
(1)
µν,κλΠ̃

(θΣ)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×

(
θαβΣ̃

κλ + θκλΣ̃αβ

)
√
3

, (E.0.63)

=
1√
3
θµκΣ̃νλ

(
θαβΣ̃

κλ + θκλΣ̃αβ

)
+

1√
3
θνλΣ̃µκ

(
θαβΣ̃

κλ + θκλΣ̃αβ

)
,

=
2√
3
p2Λµνθαβ −

2√
3
(b · p)2 ωµνθαβ +

1√
3
Σ̃µνΣ̃αβ −

2√
3
(b · p)ωµνΣ̃αβ,

=
1√
3
p2Π̃

(ωΛ−a)
µν,αβ − 2√

3
(b · p)2 ωµνθαβ +

2√
3
p2Λµνθαβ −

2√
3
(b · p)ωµνΣ̃αβ.

(E.0.64)
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Π̃
(θΣ)
µν,κλΠ̃

(1)κλ
,αβ =

1√
3
p2Π̃

(ωΛ−a)
µν,αβ − 2√

3
(b · p)2 θµνωαβ +

2√
3
p2θµνΛαβ −

2√
3
(b · p) Σ̃µνωαβ.

Π̃
(1)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×
(
θαβΛ

κλ + θκλΛαβ

)
√
3

, (E.0.65)

=
1√
3
θµκΣ̃νλ

(
θαβΛ

κλ + θκλΛαβ

)
+

1√
3
θνλΣ̃µκ

(
θαβΛ

κλ + θκλΛαβ

)
,

Π̃
(1)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1√
3
θµκΣ̃νλΛ

κλθαβ +
1√
3
θνλΣ̃µκΛ

κλθαβ +
1√
3
θµκθ

κλΣ̃νλΛαβ +
1√
3
θνλθ

κλΣ̃µκΛαβ,

Π̃
(1)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1√
3
b2Σ̃µνθαβ +

2√
3
(b · p) Λµνθαβ −

2√
3
(b · p) b2ωµνθαβ

− (b · p)2√
3p2

Σ̃µνθαβ +
1√
3
Σ̃µνΛαβ −

2√
3
(b · p)ωµνΛαβ, (E.0.66)

Π̃
(1)
µν,κλΠ̃

(θΛ)κλ
,αβ =

b2p2 − (b · p)2√
3p2

Σ̃µνθαβ +
2√
3
(b · p) Λµνθαβ

− 2√
3
(b · p) b2ωµνθαβ +

1√
3
Σ̃µνΛαβ −

2√
3
(b · p)ωµνΛαβ. (E.0.67)

Π̃
(θΛ)
µν,κλΠ̃

(1)κλ
,αβ =

b2p2 − (b · p)2√
3p2

θµνΣ̃αβ+
2√
3
(b · p) θµνΛαβ−

2√
3
(b · p) b2θµνωαβ+

1√
3
ΛµνΣ̃αβ−

2√
3
(b · p) Λµνωαβ.

Π̃
(1)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
× ΛαβΛ

κλ, (E.0.68)

= θµκΣ̃νλΛ
κλΛαβ + θνλΣ̃µκΛ

κλΛαβ,

note que as contrações são análogas à primeira parte das anteriores,

Π̃
(1)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

b2p2 − (b · p)2

p2
Σ̃µνΛαβ + 2 (b · p) ΛµνΛαβ − 2 (b · p) b2ωµνΛαβ,

=
b2p2 − (b · p)2

p2
Σ̃µνΛαβ + 2 (b · p) Π̃(ΛΛ)

µν,αβ − 2 (b · p) b2ωµνΛαβ. (E.0.69)

Π̃
(ΛΛ)
µν,κλΠ̃

(1)κλ
,αβ =

b2p2 − (b · p)2

p2
ΛµνΣ̃αβ + 2 (b · p) Π̃(ΛΛ)

µν,αβ − 2 (b · p) b2Λµνωαβ.

Π̃
(1)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×
(
ωκ

αΛ
λ
β + ωλ

αΛ
κ
β + ωκ

βΛ
λ
α + ωλ

βΛ
κ
α

)
,

(E.0.70)

Π̃
(1)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ =

1

2

[
θµκΣ̃νλ

(
ωλ

αΛ
κ
β + ωλ

βΛ
κ
α

)
+ θµλΣ̃νκ

(
ωκ

αΛ
λ
β + ωκ

βΛ
λ
α

)
+θνκΣ̃µλ

(
ωλ

αΛ
κ
β + ωλ

βΛ
κ
α

)
+ θνλΣ̃µκ

(
ωκ

αΛ
λ
β + ωκ

βΛ
λ
α

)]
,
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Π̃
(1)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ = θµκΣ̃νλ

(
ωλ

αΛ
κ
β + ωλ

βΛ
κ
α

)
+ θνλΣ̃µκ

(
ωκ

αΛ
λ
β + ωκ

βΛ
λ
α

)
,

podemos desenvolver os produtos e usar os resultados já calculados para escrever

Π̃
(1)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ = 2ΛµνΣ̃αβ −

2 (b · p)2

p2
ωµνΣ̃αβ. (E.0.71)

Π̃
(ωΛ−a)
µν,κλ Π̃

(1)κλ
,αβ = 2Σ̃µνΛαβ −

2 (b · p)2

p2
Σ̃µνωαβ.

Π̃
(1)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×
(
ωαβΛ

κλ + ωκλΛαβ

)
,

=
1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
ωαβΛ

κλ,

= θµκΣ̃νλωαβΛ
κλ + θνλΣ̃µκωαβΛ

κλ,

=
(
θµκΣ̃νλΛ

κλ + θνλΣ̃µκΛ
κλ
)
ωαβ,

= b2Σ̃µνωαβ + 2 (b · p) Λµνωαβ − 2 (b · p) b2ωµνωαβ −
(b · p)2

p2
Σ̃µνωαβ,

=
b2p2 − (b · p)2

p2
Σ̃µνωαβ + 2 (b · p) Λµνωαβ − 2 (b · p) b2P (0−ω)

µν,αβ . (E.0.72)

Π̃
(ωΛ−b)
µν,κλ Π̃

(1)κλ
,αβ =

b2p2 − (b · p)2

p2
ωµνΣ̃αβ + 2 (b · p)ωµνΛαβ − 2 (b · p) b2P (0−ω)

µν,αβ .

Π̃
(1)
µν,κλΠ̃

(ωΣ)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×
(
ωαβΣ̃

κλ + ωκλΣ̃αβ

)
,

=
1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
ωαβΣ̃

κλ,

=
(
θµκΣ̃νλΣ̃

κλ + θνλΣ̃µκΣ̃
κλ
)
ωαβ,

= 2p2Λµνωαβ − 2 (b · p)2 P (0−ω)
µν,αβ . (E.0.73)

Π̃
(ωΣ)
µν,κλΠ̃

(1)κλ
,αβ = 2p2ωµνΛωαβ − 2 (b · p)2 P (0−ω)

µν,αβ .

Π̃
(1)
µν,κλΠ̃

(ΛΣ)κλ
,αβ =

1

2

(
θµκΣ̃νλ + θµλΣ̃νκ + θνκΣ̃µλ + θνλΣ̃µκ

)
×
(
ΛαβΣ̃

κλ + ΛκλΣ̃αβ

)
, (E.0.74)

=
(
θµκΣ̃

κλΣ̃νλ + θνκΣ̃µλΣ̃
κλ
)
Λαβ +

(
θµκΣ̃νλΛ

κλ + θνκΣ̃µλΛ
κλ
)
Σ̃αβ,

Π̃
(1)
µν,κλΠ̃

(ΛΣ)κλ
,αβ = 2p2ΛµνΛαβ − 2 (b · p)2 ωµνΛαβ

+

(
b2p2 − (b · p)2

p2

)
Σ̃µνΣ̃αβ + 2 (b · p) ΛµνΣ̃αβ − 2 (b · p) b2ωµνΣ̃αβ,

Π̃
(1)
µν,κλΠ̃

(ΛΣ)κλ
,αβ = 2p2Π̃

(ΛΛ)
µν,αβ − 2 (b · p)2 ωµνΛαβ +

[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,αβ

+ 2 (b · p) ΛµνΣ̃αβ − 2 (b · p) b2ωµνΣ̃αβ.
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Π̃
(ΛΣ)
µν,κλΠ̃

(1)κλ
,αβ = 2p2Π̃

(ΛΛ)
µν,αβ − 2 (b · p)2 Λµνωαβ +

[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,αβ

+ 2 (b · p) Σ̃µνΛαβ − 2 (b · p) b2Σ̃µνωαβ.

Para Π̃
(2)
µν,αβ

Π̃
(2)
µν,κλΠ̃

(2)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

1

2

(
θκαΛ

λ
β + θλαΛ

κ
β + θκβΛ

λ
α + θλβΛ

κ
α

)
,

(E.0.75)

Π̃
(2)
µν,κλΠ̃

(2)κλ
,αβ =

1

2

(
b2θµαΛνβ + b2θµβΛνα + b2θναΛµβ + b2θνβΛµα

+ θµκΛ
κ
βΛνλθ

λ
α + θµκΛ

κ
αΛνλθ

λ
β + θνκΛ

κ
αΛµλθ

λ
β + θνκΛ

κ
βΛµλθ

λ
α

)
,

Π̃
(2)
µν,κλΠ̃

(2)κλ
,αβ =

1

2
b2 (θµαΛνβ + θµβΛνα + θναΛµβ + θνβΛµα)

+
1

2

(
θµκΛ

κ
βΛνλθ

λ
α + θµκΛ

κ
αΛνλθ

λ
β + θνκΛ

κ
αΛµλθ

λ
β + θνκΛ

κ
βΛµλθ

λ
α

)
,

Π̃
(2)
µν,κλΠ̃

(2)κλ
,αβ =

1

2
b2 (θµαΛνβ + θµβΛνα + θναΛµβ + θνβΛµα)

+ 2ΛµνΛαβ −
(b · p)
p2

(
ΛµνΣ̃αβ + ΛαβΣ̃µν

)
+

(b · p)2

2p2
(ωµαΛνβ + ωµβΛνα + ωναΛµβ + ωνβΛµα) ,

Π̃
(2)
µν,κλΠ̃

(2)κλ
,αβ = b2Π̃

(2)
µν,αβ + 2Π̃

(ΛΛ)
µν,αβ −

(b · p)
p2

Π̃
(ΛΣ)
µν,αβ +

(b · p)2

2p2
Π̃

(ωΛ−a)
µν,αβ . (E.0.76)

Π̃
(2)
µν,κλΠ̃

(θΣ)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

1√
3

(
θαβΣ̃

κλ + θκλΣ̃αβ

)
,

=
1√
3

(
θµκΛνλΣ̃

κλ + θνκΛµλΣ̃
κλ
)
θαβ +

1√
3

(
θµκΛνλθ

κλ + θνλΛµκθ
κλ
)
Σ̃αβ,

=
2√
3
(b · p) Λµνθαβ −

(b · p)2√
3p2

Σ̃µνθαβ +
2√
3
ΛµνΣ̃αβ −

(b · p)√
3p2

Σ̃µνΣ̃αβ,

=
2√
3
(b · p) Λµνθαβ −

(b · p)2√
3p2

Σ̃µνθαβ +
2√
3
ΛµνΣ̃αβ −

1√
3
(b · p) Π̃(ωΛ−a)

µν,αβ .

(E.0.77)

Π̃
(θΣ)
µν,κλΠ̃

(2)κλ
,αβ =

2√
3
(b · p) θµνΛαβ −

(b · p)2√
3p2

θµνΣ̃αβ +
2√
3
Σ̃µνΛαβ −

1√
3
(b · p) Π̃(ωΛ−a)

µν,αβ .

Π̃
(2)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

1√
3

(
θαβΛ

κλ + θκλΛαβ

)
,

=
1√
3

(
θµκΛνλΛ

κλ + θνκΛµλΛ
κλ
)
θαβ +

1√
3

(
θµκΛνλθ

κλ + θνκΛµλθ
κλ
)
Λαβ,

=
2√
3
b2Λµνθαβ −

(b · p) b2√
3p2

Σ̃µνθαβ +
2√
3
ΛµνΛαβ −

(b · p)√
3p2

Σ̃µνΛαβ,

=
2√
3
b2Λµνθαβ −

(b · p) b2√
3p2

Σ̃µνθαβ +
2√
3
Π̃

(ΛΛ)
µν,αβ −

(b · p)√
3p2

Σ̃µνΛαβ. (E.0.78)
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Π̃
(θΛ)
µν,κλΠ̃

(2)κλ
,αβ =

2√
3
b2θµνΛαβ −

(b · p) b2√
3p2

θµνΣ̃αβ +
2√
3
Π̃

(ΛΛ)
µν,αβ −

(b · p)√
3p2

ΛµνΣ̃αβ.

Π̃
(2)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)× ΛαβΛ

κλ,

=
(
θµκΛνλΛ

κλ + θνλΛµκΛ
κλ
)
Λαβ,

= 2b2ΛµνΛαβ −
(b · p) b2

p2
Σ̃µνΛαβ,

= 2b2Π̃
(ΛΛ)
µν,αβ −

(b · p) b2

p2
Σ̃µνΛαβ. (E.0.79)

Π̃
(ΛΛ)
µν,κλΠ̃

(2)κλ
,αβ = 2b2Π̃

(ΛΛ)
µν,αβ −

(b · p) b2

p2
ΛµνΣ̃αβ.

Π̃
(2)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

(
ωκ

αΛ
λ
β + ωλ

αΛ
κ
β + ωκ

βΛ
λ
α + ωλ

βΛ
κ
α

)
,

=
1

2
(θνκΛµλ + θµκΛνλ)

(
ωλ

αΛ
κ
β + ωλ

βΛ
κ
α

)
+

1

2
(θµλΛνκ + θνλΛµκ)

(
ωκ

αΛ
λ
β + ωκ

βΛ
λ
α

)
= θµκΛνλω

λ
αΛ

κ
β + θµκΛνλω

λ
βΛ

κ
α + θνκΛµλω

λ
αΛ

κ
β + θνκΛµλω

λ
βΛ

κ
α,

=
2 (b · p)

p2
ΛµνΣ̃αβ −

(b · p)2

p2
(ωµαΛνβ + ωµβΛνα + ωναΛµβ + ωνβΛµα) ,

=
2 (b · p)

p2
ΛµνΣ̃αβ −

(b · p)2

p2
Π̃

(ωΛ−a)
µν,αβ . (E.0.80)

Π̃
(ωΛ−a)
µν,κλ Π̃

(2)κλ
,αβ =

2 (b · p)
p2

Σ̃µνΛαβ −
(b · p)2

p2
Π̃

(ωΛ−a)
µν,αβ .

Π̃
(2)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

(
ωαβΛ

κλ + ωκλΛαβ

)
,

=
(
θµκΛνλΛ

κλ + θνλΛµκΛ
κλ
)
ωαβ,

= 2b2Λµνωαβ −
(b · p) b2

p2
Σ̃µνωαβ. (E.0.81)

Π̃
(ωΛ−b)
µν,κλ Π̃

(2)κλ
,αβ = 2b2ωµνΛαβ −

(b · p) b2

p2
ωµνΣ̃αβ.

Π̃
(2)
µν,κλΠ̃

(ωΣ)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

(
ωαβΣ̃

κλ + ωκλΣ̃αβ

)
,

=
(
Σ̃κλθµκΛνλ + Σ̃κλθνλΛµκ

)
ωαβ,

= 2 (b · p) Λµνωαβ −
(b · p)2

p2
Σ̃µνωαβ. (E.0.82)

Π̃
(ωΣ)
µν,κλΠ̃

(2)κλ
,αβ = 2 (b · p)ωµνΛαβ −

(b · p)2

p2
ωµνΣ̃αβ.
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Π̃
(2)
µν,κλΠ̃

(ΛΣ)κλ
,αβ =

1

2
(θµκΛνλ + θµλΛνκ + θνκΛµλ + θνλΛµκ)×

(
ΛαβΣ̃

κλ + ΛκλΣ̃αβ

)
,

=
(
θµκΛνλΣ̃

κλ + θνκΛµλΣ̃
κλ
)
Λαβ +

(
θµκΛνλΛ

κλ + θνκΛµλΛ
κλ
)
Σ̃αβ,

= 2 (b · p) ΛµνΛαβ −
(b · p)2

p2
Σ̃µνΛαβ + 2b2ΛµνΣ̃αβ −

(b · p) b2

p2
Σ̃µνΣ̃αβ,

= 2 (b · p) Π̃(ΛΛ)
µν,αβ −

(b · p)2

p2
Σ̃µνΛαβ + 2b2ΛµνΣ̃αβ − (b · p) b2Π̃(ωΛ−a)

µν,αβ . (E.0.83)

Π̃
(ΛΣ)
µν,κλΠ̃

(2)κλ
,αβ = 2 (b · p) Π̃(ΛΛ)

µν,αβ −
(b · p)2

p2
ΛµνΣ̃αβ + 2b2Σ̃µνΛαβ − (b · p) b2Π̃(ωΛ−a)

µν,αβ .

Para Π̃
(θΣ)
µν,αβ

Π̃
(θΣ)
µν,κλΠ̃

(θΣ)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
× 1√

3

(
θαβΣ̃

κλ + θκλΣ̃αβ

)
,

=
1

3
θµνΣ̃κλθαβΣ̃

κλ +
1

3
θκλΣ̃µνθ

κλΣ̃αβ,

=
2

3

(
b2p2 + (b · p)2

)
θµνθαβ + Σ̃µνΣ̃αβ,

= 2
[
b2p2 + (b · p)2

]
P

(0−θ)
µν,αβ + p2Π̃

(ωΛ−a)
µν,αβ . (E.0.84)

Π̃
(θΣ)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
× 1√

3

(
θαβΛ

κλ + θκλΛαβ

)
,

=
1

3
θµνθαβΣ̃κλΛ

κλ +
1

3
Σ̃µνθαβθκλΛ

κλ + Σ̃µνΛαβ,

=
2

3
(b · p) b2θµνθαβ +

(
b2p2 − (b · p)2

)
3p2

Σ̃µνθαβ + Σ̃µνΛαβ,

= 2 (b · p) b2P (0−θ)
µν,αβ +

b2p2 − (b · p)2

3p2
Σ̃µνθαβ + Σ̃µνΛαβ. (E.0.85)

Π̃
(θΛ)
µν,κλΠ̃

(θΣ)κλ
,αβ = 2 (b · p) b2P (0−θ)

µν,αβ +
b2p2 − (b · p)2

3p2
θµνΣ̃αβ + ΛµνΣ̃αβ.

Π̃
(θΣ)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
× ΛαβΛ

κλ,

=
1√
3
θµνΛαβΣ̃κλΛ

κλ +
1√
3
Σ̃µνΛαβθκλΛ

κλ,

=
2√
3
(b · p) b2θµνΛαβ +

b2p2 − (b · p)2√
3p2

Σ̃µνΛαβ. (E.0.86)

Π̃
(ΛΛ)
µν,κλΠ̃

(θΣ)κλ
,αβ =

2√
3
(b · p) b2Λµνθαβ +

b2p2 − (b · p)2√
3p2

ΛµνΣ̃αβ.
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Π̃
(θΣ)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
×
(
ωκ

αΛ
λ
β + ωλ

αΛ
κ
β + ωκ

βΛ
λ
α + ωλ

βΛ
κ
α

)
,

=
2√
3
θµνΣ̃κλ

(
ωκ

αΛ
λ
β + ωλ

βΛ
κ
α

)
,

=
2
[
b2p2 + (b · p)2

]
√
3p2

θµνΣ̃αβ. (E.0.87)

Π̃
(ωΛ−a)
µν,κλ Π̃

(θΣ)κλ
,αβ =

2
[
b2p2 + (b · p)2

]
√
3p2

Σ̃µνθαβ.

Π̃
(θΣ)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
×
(
ωαβΛ

κλ + ωκλΛαβ

)
,

=
1√
3
θµνωαβΣ̃κλΛ

κλ +
1√
3
θµνΛαβΣ̃κλω

κλ +
1√
3
Σ̃µνωαβθκλΛ

κλ,

=
2√
3
(b · p) b2θµνωαβ +

2√
3
(b · p) θµνΛαβ +

b2p2 − (b · p)2√
3p2

Σ̃µνωαβ. (E.0.88)

Π̃
(ωΛ−b)
µν,κλ Π̃

(θΣ)κλ
,αβ =

2√
3
(b · p) b2ωµνθαβ +

2√
3
(b · p) Λµνθαβ +

b2p2 − (b · p)2√
3p2

ωµνΣ̃αβ.

Π̃
(θΣ)
µν,κλΠ̃

(ωΣ)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
×
(
ωαβΣ̃

κλ + ωκλΣ̃αβ

)
,

=
1√
3
θµνωαβΣ̃κλΣ̃

κλ +
1√
3
θµνΣ̃αβΣ̃κλω

κλ,

=
2√
3

[
b2p2 + (b · p)2

]
θµνωαβ +

2√
3
(b · p) θµνΣ̃αβ. (E.0.89)

Π̃
(ωΣ)
µν,κλΠ̃

(θΣ)κλ
,αβ =

2√
3

[
b2p2 + (b · p)2

]
ωµνθαβ +

2√
3
(b · p) Σ̃µνθαβ.

Π̃
(θΣ)
µν,κλΠ̃

(ΛΣ)κλ
,αβ =

1√
3

(
θµνΣ̃κλ + θκλΣ̃µν

)
×
(
ΛαβΣ̃

κλ + ΛκλΣ̃αβ

)
,

=
1√
3
θµνΛαβΣ̃κλΣ̃

κλ +
1√
3
θµνΣ̃αβΣ̃κλΛ

κλ +
1√
3
Σ̃µνΣ̃αβΛ

κλθκλ,

=
2√
3

[
b2p2 + (b · p)2

]
θµνΛαβ +

2√
3
(b · p) b2θµνΣ̃αβ +

[
b2p2 − (b · p)2

]
√
3p2

Σ̃µνΣ̃αβ,

=
2√
3

[
b2p2 + (b · p)2

]
θµνΛαβ +

2√
3
(b · p) b2θµνΣ̃αβ +

1√
3

[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,αβ .

(E.0.90)

Π̃
(ΛΣ)
µν,κλΠ̃

(θΣ)κλ
,αβ =

2√
3

[
b2p2 + (b · p)2

]
Λµνθαβ +

2√
3
(b · p) b2Σ̃µνθαβ +

1√
3

[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,αβ .
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Para Π̃
(θΛ)
µν,αβ

Π̃
(θΛ)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)×

1√
3

(
θαβΛ

κλ + θκλΛαβ

)
,

=
1

3
θµνθαβΛκλΛ

κλ +
1

3
θµνΛαβΛκλθ

κλ +
1

3
ΛµνθαβθκλΛ

κλ +
1

3
ΛµνΛαβθκλθ

κλ

=
1

3
b4θµνθαβ +

(
b2p2 − (b · p)2

)
3p2

(θµνΛαβ + Λµνθαβ) + ΛµνΛαβ,

= b4P
(0−θ)
µν,αβ +

b2p2 − (b · p)2√
3p2

Π̃
(θΛ)
µν,αβ + Π̃

(ΛΛ)
µν,αβ. (E.0.91)

Π̃
(θΛ)
µν,κλΠ̃

(ΛΛ)κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)× ΛαβΛ

κλ,

=
1√
3
ΛαβθµνΛκλΛ

κλ +
1√
3
ΛαβΛµνΛ

κλθκλ,

=
1√
3
b4θµνΛαβ +

b2p2 − (b · p)2√
3p2

Π̃
(ΛΛ)
µν,αβ. (E.0.92)

Π̃
(ΛΛ)
µν,κλΠ̃

(θΛ)κλ
,αβ =

1√
3
b4Λµνθαβ +

b2p2 − (b · p)2√
3p2

Π̃
(ΛΛ)
µν,αβ.

Π̃
(θΛ)
µν,κλΠ̃

(ωΛ−a)κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)×

(
ωκ

αΛ
λ
β + ωλ

αΛ
κ
β + ωκ

βΛ
λ
α + ωλ

βΛ
κ
α

)
,

=
2√
3

(
θµνΛκλω

κ
αΛ

λ
β + θµνΛκλω

λ
βΛ

κ
α

)
,

=
2 (b · p) b2√

3p2
θµνΣ̃αβ. (E.0.93)

Π̃
(ωΛ−a)
µν,κλ Π̃

(θΛ)κλ
,αβ =

2 (b · p) b2√
3p2

Σ̃µνθαβ

Π̃
(θΛ)
µν,κλΠ̃

(ωΛ−b)κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)×

(
ωαβΛ

κλ + ωκλΛαβ

)
,

=
1√
3
θµνωαβΛκλΛ

κλ +
1√
3
θµνΛαβΛκλω

κλ +
1√
3
ΛµνωαβθκλΛ

κλ,

=
1√
3
b4θµνωαβ +

(b · p)2√
3p2

θµνΛαβ +
b2p2 − (b · p)2√

3p2
Λµνωαβ. (E.0.94)

Π̃
(ωΛ−b)
µν,κλ Π̃

(θΛ)κλ
,αβ =

1√
3
b4ωµνθαβ +

(b · p)2√
3p2

Λµνθαβ +
b2p2 − (b · p)2√

3p2
ωµνΛαβ.

Π̃
(θΛ)
µν,κλΠ̃

(ωΣ) κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)×

(
ωαβΣ̃

κλ + ωκλΣ̃αβ

)
,

=
1√
3
θµνωαβΛκλΣ̃

κλ +
1√
3
θµνΣ̃αβΛκλω

κλ,

=
2√
3
(b · p) b2θµνωαβ +

(b · p)2√
3p2

θµνΣ̃αβ. (E.0.95)
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Π̃
(ωΣ)
µν,κλΠ̃

(θΛ)κλ
,αβ =

2√
3
(b · p) b2ωµνθαβ +

(b · p)2√
3p2

Σ̃µνθαβ.

Π̃
(θΛ)
µν,κλΠ̃

(ΛΣ) κλ
,αβ =

1√
3
(θµνΛκλ + θκλΛµν)

(
ΛαβΣ̃

κλ + ΛκλΣ̃αβ

)
,

=
1√
3
θµνΛαβΛκλΣ̃

κλ +
1√
3
ΛκλΛ

κλθµνΣ̃αβ +
1√
3
θκλΛ

κλΛµνΣ̃αβ,

=
2√
3
(b · p) b2θµνΛαβ +

1√
3
b4θµνΣ̃αβ +

b2p2 − (b · p)2√
3p2

ΛµνΣ̃αβ. (E.0.96)

Π̃
(ΛΣ)
µν,κλΠ̃

(θΛ)κλ
,αβ =

2√
3
(b · p) b2Λµνθαβ +

1√
3
b4Σ̃µνθαβ +

b2p2 − (b · p)2√
3p2

Σ̃µνΛαβ.

113



APÊNDICE F
Cálculo do propagador com violação da
simetria de Lorentz

Aqui apresentaremos os passos omitidos no cálculo do propagador

Oµν,αβ = a1P
(1)
µν,αβ +a2P

(2)
µν,αβ +a3P

(0−θ)
µν,αβ +a4P

(0−θω)
µν,αβ +a5Π̃

(1)
µν,αβ +a6Π̃

(2)
µν,αβ +a7Π̃

(θΣ)
µν,αβ +a8Π̃

(θΛ)
µν,αβ,

(F.0.1)

O−1
µν,αβ = b1P

(1)
µν,αβ + b2P

(2)
µν,αβ + b3P

(0−θ)
µν,αβ + b4P

(0−ω)
µν,αβ + b5P

(0−θω)
µν,αβ + b6Π̃

(1)
µν,αβ + b7Π̃

(2)
µν,αβ

+ b8Π̃
(θΣ)
µν,αβ + b9Π̃

(θΛ)
µν,αβ + b10Π̃

(ΛΛ)
µν,αβ + b11Π̃

(ωΛ−a)
µν,αβ + b12Π̃

(ωΛ−b)
µν,αβ + b13Π̃

(ωΣ)
µν,αβ + b14Π̃

(ΛΣ)
µν,αβ.

Façamos OO−1 = I,

a1P
(1)O−1 = a1b1P

(1)
µν,αβ + a1b6

[
(b · p)P (1)

µν,αβ+Π
(1−b)
µν,αβ

]
+ a1b7

(b · p)
p2

Π
(1−b)
µν,αβ

+
1√
3
a1b8

[
Σ̃µνθαβ − 2 (b · p)ωµνθαβ

]
+

1√
3
a1b9

[
(b · p)
p2

Σ̃µνθαβ − 2
(b · p)2

p2
ωµνθαβ

]

+ a1b10

[
(b · p)
p2

Σ̃µνΛαβ − 2
(b · p)2

p2
ωµνΛαβ

]
+ a1b11

[
Π̃

(ωΛ−a)
µν,αβ − 2

(b · p)
p2

ωµνΣ̃αβ

]

+ a1b12

[
(b · p)
p2

Σ̃µνωαβ −
2 (b · p)2

p2
P

(0−ω)
µν,αβ

]
+ a1b13

[
Σ̃µνωαβ − 2 (b · p)P (0−ω)

µν,αβ

]
+ a1b14

[
Σ̃µνΛαβ − 2 (b · p)ωµνΛαβ + (b · p) Π̃(ωΛ−a)

µν,κλ − 2 (b · p)2

p2
ωµνΣ̃αβ

]
,
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a1P
(1)O−1 = [a1b1 + a1b6 (b · p)]P (1)

µν,αβ−

[
2a1b13 (b · p) + 2a1b12

(b · p)2

p2

]
P

(0−ω)
µν,αβ

+

[
a1b6 + a1b7

(b · p)
p2

]
Π

(1−b)
µν,αβ + [a1b14 (b · p) + a1b11] Π̃

(ωΛ−a)
µν,αβ

+

[
1√
3
a1b8 + a1b9

(b · p)√
3p2

]
Σ̃µνθαβ −

[
2√
3
a1b8 (b · p) +

2√
3
a1b9

(b · p)2

p2

]
ωµνθαβ

+

[
a1b12

(b · p)
p2

+ a1b13

]
Σ̃µνωαβ +

[
a1b14 + a1b10

(b · p)
p2

]
Σ̃µνΛαβ

−

[
2a1b11

(b · p)
p2

+ 2a1b14
(b · p)2

p2

]
ωµνΣ̃αβ −

[
2a1b10

(b · p)2

p2
+ 2a1b14 (b · p)

]
ωµνΛαβ.

a2P
(2)O−1 = a2b2P

(2)
µν,αβ + a2b6

[
Π

(1−a)
µν,αβ − (b · p)P (1)

µν,αβ −
1

3
θµνΣ̃αβ +

2

3
(b · p) θµνωαβ

]
+ a2b7

[
Π̃

(2)
µν,αβ −

(b · p)
p2

Π
(1−b)
µν,αβ −

2

3
θµνΛαβ +

(b · p)
3p2

θµνΣ̃αβ

]
+

1√
3
a2b9

[
Λµνθαβ −

(b · p)
p2

Σ̃µνθαβ +
(b · p)2

p2
ωµνθαβ −

b2p2 − (b · p)2

p2
P

(0−θ)
µν,αβ

]

+ a2b10

[
Π̃

(ΛΛ)
µν,αβ −

(b · p)
p2

Σ̃µνΛαβ +
(b · p)2

p2
ωµνΛαβ −

b2p2 − (b · p)2

3p2
θµνΛαβ

]

+ a2b12

[
Λµνωαβ −

(b · p)
p2

Σ̃µνωαβ +
(b · p)2

p2
P

(0−ω)
µν,αβ − b2p2 − (b · p)2

3p2
θµνωαβ

]

+ a2b14

[
ΛµνΣ̃αβ − (b · p) Π̃(ωΛ−a)

µν,αβ +
(b · p)2

p2
ωµνΣ̃αβ −

b2p2 − (b · p)2

3p2
θµνΣ̃αβ

]
,

a2P
(2)O−1 = −a2b6 (b · p)P (1)

µν,αβ + a2b2P
(2)
µν,αβ − a2b9

b2p2 − (b · p)2√
3p2

P
(0−θ)
µν,αβ + a2b12

(b · p)2

p2
P

(0−ω)
µν,αβ

+ a2b7Π̃
(2)
µν,αβ − a2b7

(b · p)
p2

Π
(1−b)
µν,αβ + a2b6Π

(1−a)
µν,αβ − a2b14 (b · p) Π̃(ωΛ−a)

µν,κλ + a2b10Π̃
(ΛΛ)
µν,αβ

+ a2b9
(b · p)2√

3p2
ωµνθαβ +

1√
3
a2b9Λµνθαβ − a2b9

(b · p)√
3p2

Σ̃µνθαβ

+ a2b12Λµνωαβ − a2b12
(b · p)
p2

Σ̃µνωαβ +

[
2

3
a2b6 (b · p)− a2b12

b2p2 − (b · p)2

3p2

]
θµνωαβ

+ a2b10
(b · p)2

p2
ωµνΛαβ − a2b10

(b · p)
p2

Σ̃µνΛαβ −

[
a2b10

b2p2 − (b · p)2

3p2
+

2

3
a2b7

]
θµνΛαβ

+

[
a2b7

(b · p)
3p2

− 1

3
a2b6 − a2b14

b2p2 − (b · p)2

3p2

]
θµνΣ̃αβ

+ a2b14ΛµνΣ̃αβ + a2b14
(b · p)2

p2
ωµνΣ̃αβ,
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a3P
(0−θ)O−1 = a3b3P

(0−θ)
µν,αβ +

1√
3
a3b5θµνωαβ + a3b6

[
1

3
θµνΣ̃αβ −

2

3
(b · p) θµνωαβ

]
+ a3b7

[
2

3
θµνΛαβ −

(b · p)
3p2

θµνΣ̃αβ

]
+

1√
3
a3b8θµνΣ̃αβ

+
1√
3
a3b9

[
b2p2 − (b · p)2

p2
P

(0−θ)
µν,αβ + θµνΛαβ

]
+ a3b10

b2p2 − (b · p)2

3p2
θµνΛαβ

+ a3b12
b2p2 − (b · p)2

3p2
θµνωαβ + a3b14

b2p2 − (b · p)2

3p2
θµνΣ̃αβ,

a3P
(0−θ)O−1 =

[
a3b3 + a3b9

b2p2 − (b · p)2√
3p2

]
P

(0−θ)
µν,αβ

+

[
a3b12

b2p2 − (b · p)2

3p2
+

1√
3
a3b5 −

2

3
a3b6 (b · p)

]
θµνωαβ

+

[
1√
3
a3b8 +

1

3
a3b6 + a3b14

b2p2 − (b · p)2

3p2
− a3b7

(b · p)
3p2

]
θµνΣ̃αβ

+

[
1√
3
a3b9 +

2

3
a3b7 + a3b10

b2p2 − (b · p)2

3p2

]
θµνΛαβ.

a4P
(0−θω)O−1 =

1√
3
a4b3θµνωαβ +

1√
3
a4b4ωµνθαβ + a4b5

(
P

(0−θ)
µν,αβ + P

(0−ω)
µν,αβ

)
+

1√
3
a4b6

[
ωµνΣ̃αβ − 2 (b · p)P (0−ω)

µν,αβ

]
+

1√
3
a4b7

[
2ωµνΛαβ −

(b · p)
p2

ωµνΣ̃αβ

]
+ a4b8

[
2 (b · p)P (0−θ)

µν,αβ + ωµνΣ̃αβ

]
+ a4b9

[
(b · p)2

p2
P

(0−θ)
µν,αβ +

b2p2 − (b · p)2

3p2
ωµνθαβ + ωµνΛαβ

]

+
1√
3
a4b10

[
(b · p)2

p2
θµνΛαβ +

b2p2 − (b · p)2

p2
ωµνΛαβ

]
+

2√
3
a4b11

(b · p)
p2

θµνΣ̃αβ

+
1√
3
a4b12

[
(b · p)2

p2
θµνωαβ +

b2p2 − (b · p)2

p2
P

(0−ω)
µν,αβ + θµνΛαβ

]
+

1√
3
a4b13

[
2 (b · p) θµνωαβ + θµνΣ̃αβ

]
+

1√
3
a4b14

[
2 (b · p) θµνΛαβ +

(b · p)2

p2
θµνΣ̃αβ +

b2p2 − (b · p)2

p2
ωµνΣ̃αβ

]
.
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a4P
(0−θω)O−1 =

[
a4b5 + 2a4b8 (b · p) + a4b9

(b · p)2

p2

]
P

(0−θ)
µν,αβ

+

[
a4b5 −

2√
3
a4b6 (b · p) + a4b12

b2p2 − (b · p)2√
3p2

]
P

(0−ω)
µν,αβ

+

[
1√
3
a4b4 + a4b9

b2p2 − (b · p)2

3p2

]
ωµνθαβ +

[
1√
3
a4b3 +

2√
3
a4b13 (b · p) + a4b12

(b · p)2√
3p2

]
θµνωαβ

+

[
1√
3
a4b13 +

2√
3
a4b11

(b · p)
p2

+ a4b14
(b · p)2√

3p2

]
θµνΣ̃αβ

+

[
a4b8 +

1√
3
a4b6 − a4b7

(b · p)√
3p2

+ a4b14
b2p2 − (b · p)2√

3p2

]
ωµνΣ̃αβ

+

[
a4b9 +

2√
3
a4b7 + a4b10

b2p2 − (b · p)2√
3p2

]
ωµνΛαβ

+

[
1√
3
a4b12 +

2√
3
a4b14 (b · p) + a4b10

(b · p)2√
3p2

]
θµνΛαβ.

a5Π̃
(1)O−1 = a5b1

[
(b · p)P (1)

µν,αβ+Π
(1−a)
µν,αβ

]
+a5b2

[
Π

(1−b)
µν,αβ − (b · p)P (1)

µν,αβ −
1

3
Σ̃µνθαβ +

2

3
(b · p)ωµνθαβ

]
+ a5b3

[
1

3
Σ̃µνθαβ −

2

3
(b · p)ωµνθαβ

]
+

1√
3
a5b5

[
Σ̃µνωαβ − 2 (b · p)P (0−ω)

µν,αβ

]
+ a5b6

[
1

2
p2Π̃

(ωΛ−a)
µν,αβ − (b · p) Π̃(ωΣ)

µν,αβ + 2 (b · p)2 P (0−ω)
µν,αβ + p2Π̃

(2)
µν,αβ + (b · p) Π̃(1)

µν,αβ + b2p2P
(1)
µν,αβ

]
+a5b7

[
(b · p) Π̃(2)

µν,αβ + b2Π
(1−b)
µν,αβ + Σ̃µνΛαβ −

1

2
(b · p) Π̃(ωΛ−a)

µν,αβ − 2 (b · p)ωµνΛαβ +
(b · p)2

p2
ωµνΣ̃αβ

]
+

1√
3
a5b8

[
p2Π̃

(ωΛ−a)
µν,αβ − 2 (b · p)2 ωµνθαβ + 2p2Λµνθαβ − 2 (b · p)ωµνΣ̃αβ

]
+

1√
3
a5b9

[
b2p2 − (b · p)2

p2
Σ̃µνθαβ + 2 (b · p) Λµνθαβ − 2 (b · p) b2ωµνθαβ + Σ̃µνΛαβ − 2 (b · p)ωµνΛαβ

]

+ a5b10

[
b2p2 − (b · p)2

p2
Σ̃µνΛαβ + 2 (b · p) Π̃(ΛΛ)

µν,αβ − 2 (b · p) b2ωµνΛαβ

]

+ a5b11

[
2ΛµνΣ̃αβ −

2 (b · p)2

p2
ωµνΣ̃αβ

]
+ a5b13

[
2p2Λµνωαβ − 2 (b · p)2 P (0−ω)

µν,αβ

]
+ a5b12

[
b2p2 − (b · p)2

p2
Σ̃µνωαβ + 2 (b · p) Λµνωαβ − 2 (b · p) b2P (0−ω)

µν,αβ

]
+a5b14

[
2p2Π̃

(ΛΛ)
µν,αβ − 2 (b · p)2 ωµνΛαβ +

[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,κλ + 2 (b · p) ΛµνΣ̃αβ − 2 (b · p) b2ωµνΣ̃αβ

]
,
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a5Π̃
(1)O−1 =

[
a5b1 (b · p)+a5b6b

2p2 − a5b2 (b · p)
]
P

(1)
µν,αβ

+

[
2a5b6 (b · p)2−

2√
3
a5b5 (b · p)− 2a5b13 (b · p)2 − 2a5b12 (b · p) b2

]
P

(0−ω)
µν,αβ

+
[
a5b6p

2 + a5b7 (b · p)
]
Π̃

(2)
µν,αβ + [a5b1 + a5b6 (b · p)] Π(1−a)

µν,αβ +
[
a5b2 + a5b6 (b · p) + a5b7b

2
]
Π

(1−b)
µν,αβ

+

{
1√
3
a5b8p

2 +
1

2
a5b6p

2 − 1

2
a5b7 (b · p) + a5b14

[
b2p2 − (b · p)2

]}
Π̃

(ωΛ−a)
µν,κλ

+
[
2a5b10 (b · p) + 2a5b14p

2
]
Π̃

(ΛΛ)
µν,αβ

−
[
2a5b10 (b · p) b2 +

2√
3
a5b9 (b · p) + 2a5b7 (b · p) + 2a5b14 (b · p)2

]
ωµνΛαβ

+

[
a5b7

(b · p)2

p2
− a5b6 (b · p)− 2a5b14 (b · p) b2 −

2√
3
a5b8 (b · p)− 2a5b11

(b · p)2

p2

]
ωµνΣ̃αβ

+

[
2

3
a5b2 (b · p)−

2√
3
a5b9 (b · p) b2 −

2√
3
a5b8 (b · p)2 −

2

3
a5b3 (b · p)

]
ωµνθαβ

+

[
−1

3
a5b2 +

1

3
a5b3 + a5b9

b2p2 − (b · p)2√
3p2

]
Σ̃µνθαβ+

[
1√
3
a5b5 − a5b6 (b · p) + a5b12

b2p2 − (b · p)2

p2

]
Σ̃µνωαβ

+

[
2√
3
a5b8p

2 +
2√
3
a5b9 (b · p)

]
Λµνθαβ +

[
a5b7 +

1√
3
a5b9 + a5b10

b2p2 − (b · p)2

p2

]
Σ̃µνΛαβ

+ [2a5b14 (b · p) + 2a5b11] ΛµνΣ̃αβ +
[
2a5b12 (b · p) + 2a5b13p

2
]
Λµνωαβ.

a6Π̃
(2)O−1 = a6b1

(b · p)
p2

Π
(1−a)
µν,αβ + a6b2

[
Π̃

(2)
µν,αβ −

(b · p)
p2

Π
(1−a)
µν,αβ −

2

3
Λµνθαβ +

(b · p)
3p2

Σ̃µνθαβ

]
+ a6b3

[
2

3
Λµνθαβ −

(b · p)
3p2

Σ̃µνθαβ

]
+

1√
3
a6b5

[
2Λµνωαβ −

(b · p)
p2

Σ̃µνωαβ

]
+a6b6

[
(b · p) Π̃(2)

µν,αβ + b2Π
(1−a)
µν,αβ + ΛµνΣ̃αβ −

1

2
(b · p) Π̃(ωΛ−a)

µν,αβ − 2 (b · p) Λµνωαβ +
(b · p)2

p2
Σ̃µνωαβ

]

+ a6b7

[
b2Π̃

(2)
µν,αβ + 2Π̃

(ΛΛ)
µν,αβ −

(b · p)
p2

Π̃
(ΛΣ)
µν,αβ +

(b · p)2

2p2
Π̃

(ωΛ−a)
µν,αβ

]

+
1√
3
a6b8

[
2 (b · p) Λµνθαβ −

(b · p)2

p2
Σ̃µνθαβ + 2ΛµνΣ̃αβ − (b · p) Π̃(ωΛ−a)

µν,αβ

]

+
1√
3
a6b9

[
2b2Λµνθαβ −

(b · p) b2

p2
Σ̃µνθαβ + 2Π̃

(ΛΛ)
µν,αβ −

(b · p)
p2

Σ̃µνΛαβ

]
+ a6b10

[
2b2Π̃

(ΛΛ)
µν,αβ −

(b · p) b2

p2
Σ̃µνΛαβ

]
+ a6b11

[
2 (b · p)

p2
ΛµνΣ̃αβ −

(b · p)2

p2
Π̃

(ωΛ−a)
µν,αβ

]

+ a6b12

[
2b2Λµνωαβ −

(b · p) b2

p2
Σ̃µνωαβ

]
+ a6b13

[
2 (b · p) Λµνωαβ −

(b · p)2

p2
Σ̃µνωαβ

]

+ a6b14

[
2 (b · p) Π̃(ΛΛ)

µν,αβ −
(b · p)2

p2
Σ̃µνΛαβ + 2b2ΛµνΣ̃αβ − (b · p) b2Π̃(ωΛ−a)

µν,αβ

]
,
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a6Π̃
(2)O−1 =

[
a6b2 + a6b7b

2 + a6b6 (b · p)
]
Π̃

(2)
µν,αβ +

[
a6b1

(b · p)
p2

− a6b2
(b · p)
p2

+ a6b6b
2

]
Π

(1−a)
µν,αβ

+

[
a6b7

(b · p)2

2p2
− 1

2
a6b6 (b · p)− a6b14 (b · p) b2 −

1√
3
a6b8 (b · p)− a6b11

(b · p)2

p2

]
Π̃

(ωΛ−a)
µν,αβ

+

[
2a6b7 + 2a6b10b

2 + 2a6b14 (b · p) +
2√
3
a6b9

]
Π̃

(ΛΛ)
µν,αβ

+

[
a6b2

(b · p)
3p2

− a6b8
(b · p)2√

3p2
− a6b3

(b · p)
3p2

− a6b9
(b · p) b2√

3p2

]
Σ̃µνθαβ

−

[
a6b5

(b · p)√
3p2

+ a6b13
(b · p)2

p2
+ a6b12

(b · p) b2

p2
− a6b6

(b · p)2

p2

]
Σ̃µνωαβ

+

[
−a6b7

(b · p)
p2

− a6b9
(b · p)√
3p2

− a6b14
(b · p)2

p2
− a6b10

(b · p) b2

p2

]
Σ̃µνΛαβ

+

[
2√
3
a6b9b

2 +
2√
3
a6b8 (b · p)−

2

3
a6b2 +

2

3
a6b3

]
Λµνθαβ

+

[
2√
3
a6b5 + 2a6b12b

2 + 2a6b13 (b · p)− 2a6b6 (b · p)
]
Λµνωαβ

+

[
a6b6 + a6b11

2 (b · p)
p2

− a6b7
(b · p)
p2

+
2√
3
a6b8 + 2a6b14b

2

]
ΛµνΣ̃αβ.

a7Π̃
(θΣ)O−1 =

1√
3
a7b1

[
θµνΣ̃αβ − 2 (b · p) θµνωαβ

]
+

1√
3
a7b3Σ̃µνθαβ

+
2√
3
a7b4 (b · p) θµνωαβ + a7b5

[
2 (b · p)P (0−θ)

µν,αβ + Σ̃µνωαβ

]
+

1√
3
a7b6

[
p2Π̃

(ωΛ−a)
µν,αβ − 2 (b · p)2 θµνωαβ + 2p2θµνΛαβ − 2 (b · p) Σ̃µνωαβ

]
+

1√
3
a7b7

[
2 (b · p) θµνΛαβ −

(b · p)2

p2
θµνΣ̃αβ + 2Σ̃µνΛαβ − (b · p) Π̃(ωΛ−a)

µν,αβ

]
+ a7b8

{
2
[
b2p2 + (b · p)2

]
P

(0−θ)
µν,αβ + p2Π̃

(ωΛ−a)
µν,αβ

}
+ a7b9

[
2 (b · p) b2P (0−θ)

µν,αβ +
b2p2 − (b · p)2

3p2
Σ̃µνθαβ + Σ̃µνΛαβ

]

+
1√
3
a7b10

[
2 (b · p) b2θµνΛαβ +

b2p2 − (b · p)2

p2
Σ̃µνΛαβ

]
+

2√
3
a7b11

b2p2 + (b · p)2

p2
θµνΣ̃αβ

+
1√
3
a7b12

[
2 (b · p) b2θµνωαβ + 2 (b · p) θµνΛαβ +

b2p2 − (b · p)2

p2
Σ̃µνωαβ

]
+

1√
3
a7b13

{
2
[
b2p2 + (b · p)2

]
θµνωαβ + 2 (b · p) θµνΣ̃αβ

}
+

1√
3
a7b14

{
2
[
b2p2 + (b · p)2

]
θµνΛαβ + 2 (b · p) b2θµνΣ̃αβ +

[
b2p2 − (b · p)2

]
Π̃

(ωΛ−a)
µν,αβ

}
,
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a7Π̃
(θΣ)O−1 =

{
2a7b5 (b · p) + 2a7b9 (b · p) b2 + 2a7b8

[
b2p2 + (b · p)2

]}
P

(0−θ)
µν,αβ

+

{
a7b8p

2 +
1√
3
a7b6p

2 − 1√
3
a7b7 (b · p) +

1√
3
a7b14

[
b2p2 − (b · p)2

]}
Π̃

(ωΛ−a)
µν,αβ

+

{
2√
3
a7b4 (b · p)−

2√
3
a7b1 (b · p) +

2√
3
a7b12 (b · p) b2

− 2√
3
a7b6 (b · p)2 +

2√
3
a7b13

[
b2p2 + (b · p)2

]}
θµνωαβ

+

[
1√
3
a7b1 +

2√
3
a7b13 (b · p) +

2√
3
a7b14 (b · p) b2 + 2a7b11

b2p2 + (b · p)2√
3p2

− a7b7
(b · p)2√

3p2

]
θµνΣ̃αβ

+

{
2√
3
a7b6p

2 +
2√
3
a7b7 (b · p) +

2√
3
a7b12 (b · p) +

2√
3
a7b14

[
b2p2 + (b · p)2

]
+

2√
3
a7b10 (b · p) b2

}
θµνΛαβ

+

[
1√
3
a7b3 + a7b9

b2p2 − (b · p)2

3p2

]
Σ̃µνθαβ

+

[
a7b5 + a7b12

b2p2 − (b · p)2√
3p2

− 2√
3
a7b6 (b · p)

]
Σ̃µνωαβ+

[
a7b9 +

2√
3
a7b7 + a7b10

b2p2 − (b · p)2√
3p2

]
Σ̃µνΛαβ.
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a8Π̃
(θΛ)O−1 =

1√
3
a8b1

[
(b · p)
p2

θµνΣ̃αβ − 2
(b · p)2

p2
θµνωαβ

]

+
1√
3
a8b2

[
θµνΛαβ −

(b · p)
p2

θµνΣ̃αβ +
(b · p)2

p2
θµνωαβ −

b2p2 − (b · p)2

p2
P

(0−θ)
µν,αβ

]

+
1√
3
a8b3

[
b2p2 − (b · p)2

p2
P

(0−θ)
µν,αβ + Λµνθαβ

]
+ a8b4

(b · p)2√
3p2

θµνωαβ

+ a8b5

[
(b · p)2

p2
P

(0−θ)
µν,αβ +

b2p2 − (b · p)2

3p2
θµνωαβ + Λµνωαβ

]

+
1√
3
a8b6

[
b2p2 − (b · p)2

p2
θµνΣ̃αβ + 2 (b · p) θµνΛαβ − 2 (b · p) b2θµνωαβ + ΛµνΣ̃αβ − 2 (b · p) Λµνωαβ

]

+
1√
3
a8b7

[
2b2θµνΛαβ −

(b · p) b2

p2
θµνΣ̃αβ + 2Π̃

(ΛΛ)
µν,αβ −

(b · p)
p2

ΛµνΣ̃αβ

]
+ a8b8

[
2 (b · p) b2P (0−θ)

µν,αβ +
b2p2 − (b · p)2

3p2
θµνΣ̃αβ + ΛµνΣ̃αβ

]

+a8b9

[
b4P

(0−θ)
µν,αβ +

b2p2 − (b · p)2√
3p2

Π̃
(θΛ)
µν,αβ + Π̃

(ΛΛ)
µν,αβ

]
+

1√
3
a8b10

[
b4θµνΛαβ +

b2p2 − (b · p)2

p2
Π̃

(ΛΛ)
µν,αβ

]

+ 2a8b11
(b · p) b2√

3p2
θµνΣ̃αβ +

1√
3
a8b12

[
b4θµνωαβ +

(b · p)2

p2
θµνΛαβ +

b2p2 − (b · p)2

p2
Λµνωαβ

]

+
1√
3
a8b13

[
2 (b · p) b2θµνωαβ +

(b · p)2

p2
θµνΣ̃αβ

]

+
1√
3
a8b14

[
2 (b · p) b2θµνΛαβ + b4θµνΣ̃αβ +

b2p2 − (b · p)2

p2
ΛµνΣ̃αβ

]
,
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a8Π̃
(θΛ)O−1 =

[
a8b9b

4 + a8b3
b2p2 − (b · p)2√

3p2
+ 2a8b8 (b · p) b2

+a8b5
(b · p)2

p2
− a8b2

b2p2 − (b · p)2√
3p2

]
P

(0−θ)
µν,αβ +

[
a8b9 +

2√
3
a8b7 + a8b10

b2p2 − (b · p)2√
3p2

]
Π̃

(ΛΛ)
µν,αβ

+

[
1√
3
a8b12b

4 − 2a8b1
(b · p)2√

3p2
+ a8b2

(b · p)2√
3p2

+ a8b4
(b · p)2√

3p2

+a8b5
b2p2 − (b · p)2

3p2
− 2√

3
a8b6 (b · p) b2 +

2√
3
a8b13 (b · p) b2

]
θµνωαβ

+

[
a8b1

(b · p)√
3p2

+ a8b6
b2p2 − (b · p)2√

3p2
+ 2a8b11

(b · p) b2√
3p2

+ a8b8
b2p2 − (b · p)2

3p2

−a8b7
(b · p) b2√

3p2
+

1√
3
a8b14b

4 + a8b13
(b · p)2√

3p2
− a8b2

(b · p)√
3p2

]
θµνΣ̃αβ

+

[
2√
3
a8b7b

2 +
1√
3
a8b2 +

1√
3
a8b10b

4 +
2√
3
a8b6 (b · p)

+
2√
3
a8b14 (b · p) b2 + a8b12

(b · p)2√
3p2

+ a8b9
b2p2 − (b · p)2√

3p2

]
θµνΛαβ

+

[
1√
3
a8b3 + a8b9

b2p2 − (b · p)2√
3p2

]
Λµνθαβ+

[
a8b5 −

2√
3
a8b6 (b · p) + a8b12

b2p2 − (b · p)2√
3p2

]
Λµνωαβ

+

[
a8b8 +

1√
3
a8b6 − a8b7

(b · p)√
3p2

+ a8b14
b2p2 − (b · p)2√

3p2

]
ΛµνΣ̃αβ.

Assim, podemos escrever o sistema

a1b1 + a1b6 (b · p)− a2b6 (b · p) + a5b1 (b · p)− a5b2 (b · p) + a5b6b
2p2 = 1,

a2b2 = 1,

− a2b9
b2p2 − (b · p)2√

3p2
+ a3b3 + a3b9

b2p2 − (b · p)2√
3p2

+ a4b5 + 2a4b8 (b · p) + a4b9
(b · p)2

p2

+ 2a7b5 (b · p) + 2a7b9b
2 (b · p) + 2a7b8

[
b2p2 + (b · p)2

]
+ a8b9b

4 + a8b3
b2p2 − (b · p)2√

3p2

+ 2a8b8b
2 (b · p) + a8b5

(b · p)2

p2
− a8b2

b2p2 − (b · p)2√
3p2

= 1,

− 2a1b13 (b · p)− 2a1b12
(b · p)2

p2
+ a2b12

(b · p)2

p2
+ a4b5 −

2√
3
a4b6 (b · p)

+ a4b12
b2p2 − (b · p)2√

3p2
− 2√

3
a5b5 (b · p) + 2a5b6 (b · p)2 − 2a5b12b

2 (b · p)− 2a5b13 (b · p)2 = 1,
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2

3
a2b6 (b · p)− a2b12

b2p2 − (b · p)2

3p2
+ a3b12

b2p2 − (b · p)2

3p2
+

1√
3
a3b5 −

2

3
a3b6 (b · p)

+
1√
3
a4b3 + a4b12

(b · p)2√
3p2

+
2√
3
a4b13 (b · p)−

2√
3
a7b1 (b · p) +

2√
3
a7b4 (b · p)

− 2√
3
a7b6 (b · p)2 +

2√
3
a7b12b

2 (b · p) + 2√
3
a7b13

[
b2p2 + (b · p)2

]
− 2a8b1

(b · p)2√
3p2

+ a8b2
(b · p)2√

3p2
+ a8b4

(b · p)2√
3p2

+ a8b5
b2p2 − (b · p)2

3p2

− 2√
3
a8b6b

2 (b · p) + 1√
3
a8b12b

4 +
2√
3
a8b13 (b · p) b2 = 0,

− 2√
3
a1b8 (b · p)−

2√
3
a1b9

(b · p)2

p2
+ a2b9

(b · p)2√
3p2

+
1√
3
a4b4+a4b9

b2p2 − (b · p)2

3p2
+
2

3
a5b2 (b · p)−

2√
3
a5b9b

2 (b · p)− 2√
3
a5b8 (b · p)2−

2

3
a5b3 (b · p) = 0,

a2b6 + a5b1 + a5b6 (b · p) + a6b1
(b · p)
p2

− a6b2
(b · p)
p2

+ a6b6b
2 = 0,

a1b6 + a1b7
(b · p)
p2

− a2b7
(b · p)
p2

+ a5b2 + a5b6 (b · p) + a5b7b
2 = 0,

a2b7 + a5b6p
2 + a5b7 (b · p) + a6b2 + a6b6 (b · p) + a6b7b

2 = 0,

a2b7
(b · p)
3p2

−1

3
a2b6+a9b1

(b · p)√
3p2

−a2b14
b2p2 − (b · p)2

3p2
+

1√
3
a3b8+

1

3
a3b6+a3b14

b2p2 − (b · p)2

3p2
−a3b7

(b · p)
3p2

+
1√
3
a4b13 +

2√
3
a4b11

(b · p)
p2

+ a4b14
(b · p)2√

3p2
+

1√
3
a7b1 − a7b7

(b · p)2√
3p2

+ 2a7b11
b2p2 + (b · p)2√

3p2

+
2√
3
a7b13 (b · p) +

2√
3
a7b14 (b · p) b2 − a8b2

(b · p)√
3p2

+ a8b6
b2p2 − (b · p)2√

3p2

+ a8b8
b2p2 − (b · p)2

3p2
− a8b7

(b · p) b2√
3p2

+ 2a8b11
(b · p) b2√

3p2
+ a8b13

(b · p)2√
3p2

+
1√
3
a8b14b

4 = 0,

1√
3
a1b8 + a1b9

(b · p)√
3p2

− a2b9
(b · p)√
3p2

− 1

3
a5b2 +

1

3
a5b3 + a5b9

b2p2 − (b · p)2√
3p2

+ a6b2
(b · p)
3p2

− a6b3
(b · p)
3p2

− a6b8
(b · p)2√

3p2
− a6b9

(b · p) b2√
3p2

+
1√
3
a7b3 + a7b9

b2p2 − (b · p)2

3p2
= 0,

− a2b10
b2p2 − (b · p)2

3p2
− 2

3
a2b7 +

2

3
a3b7 +

1√
3
a3b9 + a3b10

b2p2 − (b · p)2

3p2

+ a4b10
(b · p)2√

3p2
+

1√
3
a4b12 +

2√
3
a4b14 (b · p) +

2√
3
a7b6p

2 +
2√
3
a7b7 (b · p)

+
2√
3
a7b10 (b · p) b2 +

2√
3
a7b12 (b · p) +

2√
3
a7b14

[
b2p2 + (b · p)2

]
+

1√
3
a8b2

+
2√
3
a8b7b

2 +
1√
3
a8b10b

4 + a8b9
b2p2 − (b · p)2√

3p2
+ a8b12

(b · p)2√
3p2

+
2√
3
a8b14 (b · p) b2 = 0,
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1√
3
a2b9 +

2√
3
a5b8p

2 +
2√
3
a5b9 (b · p)−

2

3
a6b2 +

2

3
a6b3 +

2√
3
a6b8 (b · p)

+
2√
3
a6b9b

2 +
1√
3
a8b3 +

2√
3
a8b6 (b · p) + a8b9

b2p2 − (b · p)2√
3p2

= 0,

a2b10 + 2a5b10 (b · p) + 2a5b14p
2 + 2a6b7 + 2a6b10b

2 + 2a6b14 (b · p) +
2√
3
a6b9

+ a8b9 +
2√
3
a8b7 + a8b10

b2p2 − (b · p)2√
3p2

= 0,

a1b14 (b · p) + a1b11 − a2b14 (b · p) +
1

2
a5b6p

2 − 1

2
a5b7 (b · p) +

1√
3
a5b8p

2 + a5b14
[
b2p2 − (b · p)2

]
− 1

2
a6b6 (b · p) + a6b7

(b · p)2

2p2
− 1√

3
a6b8 (b · p)− a6b11

(b · p)2

p2
− a6b14 (b · p) b2

+
1√
3
a7b6p

2 − 1√
3
a7b7 (b · p) + a7b8p

2 +
1√
3
a7b14

[
b2p2 − (b · p)2

]
= 0,

− 2a1b10
(b · p)2

p2
− 2a1b14 (b · p) + a2b10

(b · p)2

p2
+

2√
3
a4b7 + a4b9

+ a4b10
b2p2 − (b · p)2√

3p2
− 2a5b7 (b · p)−

2√
3
a5b9 (b · p)− 2a5b10 (b · p) b2 − 2a5b14 (b · p)2 = 0,

a2b12 + 2a5b12 (b · p) + 2a5b13p
2 +

2√
3
a6b5 − 2a6b6 (b · p) + 2a6b12b

2

+ 2a6b13 (b · p) + a8b5 −
2√
3
a8b6 (b · p) + a8b12

b2p2 − (b · p)2√
3p2

= 0,

− 2a1b11
(b · p)
p2

− 2a1b14
(b · p)2

p2
+ a2b14

(b · p)2

p2

+
1√
3
a4b6 − a4b7

(b · p)√
3p2

+ a4b8 + a4b14
b2p2 − (b · p)2√

3p2
− a5b6 (b · p)

+ a5b7
(b · p)2

p2
− 2√

3
a5b8 (b · p)− 2a5b11

(b · p)2

p2
− 2a5b14 (b · p) b2 = 0,

a1b12
(b · p)
p2

+ a1b13 − a2b12
(b · p)
p2

+
1√
3
a5b5 − a5b6 (b · p) + a5b12

b2p2 − (b · p)2

p2
− a6b5

(b · p)√
3p2

+a6b6
(b · p)2

p2
−a6b12

(b · p) b2

p2
−a6b13

(b · p)2

p2
+a7b5−

2√
3
a7b6 (b · p)+a7b12

b2p2 − (b · p)2√
3p2

= 0,

a2b14 + 2a5b14 (b · p) + 2a5b11 + a6b6 − a6b7
(b · p)
p2

+ a6b11
2 (b · p)

p2
+

2√
3
a6b8 + 2a6b14b

2

+
1√
3
a8b6 + a8b8 − a8b7

(b · p)√
3p2

+ a8b14
b2p2 − (b · p)2√

3p2
= 0,
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a1b10
(b · p)
p2

+ a1b14 − a2b10
(b · p)
p2

+ a5b7 +
1√
3
a5b9 + a5b10

b2p2 − (b · p)2

p2
− a6b7

(b · p)
p2

− a6b9
(b · p)√
3p2

− a6b10
(b · p) b2

p2
− a6b14

(b · p)2

p2
+ a7b9 +

2√
3
a7b7 + a7b10

b2p2 − (b · p)2√
3p2

= 0.
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