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RESUMO

Esta dissertacdo tem por objetivo revisar aspectos da gravitacao de Einstein, focando nas téc-
nicas de calculo do propagador de Feynman do graviton na teoria de Einstein-Hilbert e em
modelos gravitacionais modificados. Para esse fim, apresentamos e usamos o formalismo de
projetores tensoriais, adequados para a realidade do campo gravitacional (campo de spin-2), na
famosa base de Barnes-Rivers. Frisamos que para cada modelo de gravidade considerado existe
um conjunto distinto de operadores que formam uma &lgebra fechada, e que o formalismo de
projetores tensoriais s6 funciona quando consideramos o conjunto adequado para cada cenério
especifico. Tal formalismo, além de muito elegante, é bastante poderoso por permitir calcular
o propagador do graviton em teorias gravitacionais diversas. De posse do propagador, obtemos
as relacoes de dispersao, que permitem acessar informacgoes atinentes a propagacao de sinais e
sobre as excitagoes da teoria. Neste trabalho, revisamos o calculo do propagador do graviton
em quatro teorias distintas. A primeira delas é a gravitacao de Einstein-Hilbert nao-massiva,
onde consideramos a densidade lagrangiana apenas composta pelo escalar de Ricci (R). A se-
gunda consiste numa versao estendida da teoria gravitacional de Einstein-Hilbert, modificada
por termos quadraticos, ou seja, além do escalar de Ricci, a lagrangiana desse modelo conta
com termos do tipo R? e R, R". A terceira é a gravitagio de Einstein-Chern-Simons, que é
uma teoria para gravidade em (2+ 1) dimensdes. Neste modelo, os operadores que constituem a
base de Barnes-Rivers nao formam um conjunto fechado, necessitando de uma versao estendida
para a obtencao do propagador. Por fim, abordamos uma teoria de gravitacao constituida pelo
acoplamento entre o campo bumblebee (b*) e a lagrangiana de Einstein-Hilbert. Aqui também
se faz necessaria uma extensao da base de Barnes-Rivers, através de projetores que contenham
o campo bumblebee, que é o violador da simetria de Lorentz.

Palavras-chave: Einstein-Hilbert. Teorias gravitacionais. Propagador do graviton. Barnes-
Rivers. Modelo bumblebee. Violagao da simetria de Lorentz.



ABSTRACT

This master thesis has the goal to revise some aspects of the Einstein’s gravitation, focused on
techniques of compute the graviton’s Feynman propagator in Einstein-Hilbert theory and mo-
dified models of gravity. For this purpose, we show the tensorial projectors formalism suitable
for the gravitational field case (spin-2 field) in the famous Barnes-Rivers basis. We emphasize
that for each gravity model considered exist a distinct set of operators that form a closed alge-
bra, and that the formalism of tensorial projectors only work when we consider the suitable set
for each specific case. Such formalism, besides being very elegant, is quite powerful because it
allows calculating the graviton’s propagator in different gravitational theories. In possession of
the propagator, we obtain the dispersion relations, which allow access to information related to
the propagation of signals and about the excitations of the theory. In this work, we review the
algorithm to compute the graviton’s propagator in four different theories. The first of these is
the non-massive Einstein-Hilbert gravitation, where we consider the Lagrangian density only
composed by the Ricci scalar (R). The second one consists of an extended version of the
Einstein-Hilbert gravitational theory, modified by quadratic terms, that is, in addition to the
Ricci scalar, the Lagrangian of this model has terms of the type R* and R,,, R*’. The third is
the gravitation of Einstein-Chern-Simons, which is a theory for gravity in (2 + 1) dimensions.
In this model, the operators that compose the Barnes-Rivers basis do not form a closed set,
requiring an extended version to obtain the propagator. Finally, we approach a theory of gra-
vitation constituted by the coupling between the bumblebee field (b#) and the Einstein-Hilbert
lagrangian. An extension of the Barnes-Rivers basis is also necessary here, through the projec-
tors that contain the bumblebee field, which is the violator of Lorentz’s symmetry.

Keywords: Einstein-Hilbert. Gravitational theories. Graviton’s propagator. Barnes-
Rivers. Bumblebee model. Lorentz’s symmetry violation.
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Introducao

Este trabalho aborda de maneira pormenorizada um procedimento bastante trabalhoso da fi-
sica teorica: o calculo do propagador de Feynman em teorias gravitacionais, que corresponde ao
propagador do graviton. Mesmo no cenério mais simples, que condiz a gravitacao de Einstein-
Hilbert (E-H), o procedimento exige um trato e habilidade com uma base de projetores es-
pecialmente construidos para a estutura de uma teoria de spin-2. A situacao vai se tornando
mais complexa a medida que novos termos vao sendo adicionados a acao de E-H. O fato de o
campo gravitacional ser descrito por uma teoria de spin 2, exigindo ser representado por um
tensor com dois indices, configura uma diferenca substancial em relacao ao cenario do campo
de Maxwell (spin-1). Nessa dissertacao, apresentaremos o procedimento de célculo baseado no
método dos projetores tensoriais, o mesmo usado com sucesso para o calculo do propagador em
teorias eletromagnéticas. Iniciamos, portanto, revisando o método de célculo do propagador
do campo eletromagnético dentro da teoria de Maxwell-Carrol-Field-Jackiw. A fim de fami-
liarizar o leitor com o algoritmo a ser empregado no calculo dos propagadores, apresentamos
uma abordagem inicial considerando a teoria eletromagnética de Maxwell-Carrol-Field-Jackiw.
Por possuir uma lagrangiana nao-elementar (para uma teoria de spin-1), dotada de um campo
de fundo que viola a simetria de Lorentz, a teoria de MCFJ torna-se um excelente ponto de
partida para ilustracao.

Para tratar o caso gravitacional, apresentamos a base de Barnes-Rivers, cujos operadores
sao combinagoes linearmente independente dos projetores longitudinal e transversal do campo
eletromagnético em (3 4+ 1) dimensoes. Esta base sera utilizada para expressar os operadores
bilineares e o operador identidade, assim a algebra dos projetores longitudinal e transversal nos
permite construir a algebra dos operadores de Barnes-Rivers. Ao mesmo tempo em que estes
projetores ajudam no calculo do propagador por um lado, tornam a tarefa mais trabalhosa
por outro. Isso acontece porque alguns dos operadores da base de Barnes-Rivers possuem uma
extensao significativa e, a depender dos operadores envolvidos na contracao, surgem diversos
calculos a serem realizados, o que exige um nivel de atencao considerével por parte de quem
lida com a tarefa manualmente.

Na algebra matricial, ¢ sabido que “o produto de uma matriz por sua inversa ¢ igual a
matriz identidade”. No calculo do propagador de uma teoria de calibre, pragmaticamente do
ponto de vista operacional, o produto da matriz é trocado por palavra produto por contragao
tensorial e matriz por operador bilinear. Isso se deve ao fato de o propagador de Feynman
ser o inverso de um operador tensorial que “quadra” a lagrangiana em questao. Esse operador
inverso pode ser proposto como uma combinacao linear dos operadores de Barnes-Rivers. O
procedimento consiste entao em determinar os coeficientes dessa combinacao linear e escrever
adequadamente o operador identidade. Em &lgebra matricial, a matriz identidade pode ser
representada pelo delta de Kronecker que analogamente representa a métrica de um espago
euclidiano. Isso permite a concluir que em teorias de spin 1, o operador identidade pode ser
escrito em termos do delta de Kronecker 4-dimensional, podendo ser representado por meio
do tensor métrico. No entanto, em teorias gravitacionais, a métrica nao pode assumir o papel
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de operador identidade por possuir um total de indices tensoriais (apenas dois) incompativel
com o propagador para teorias de spin-2 (que possui quatro indices tensoriais). Uma estrutura
em conformidade com essa condicao, pode ser obtida pelo produto de tensores métricos que
contenha um total de quatro indices tensoriais livres. Entretanto, nao é qualquer configuracao
envolvendo o tensor métrico que cumpre a funcao de operador identidade. Tal arranjo deve ser
compativel com a propriedade de neutralidade operacional, ou seja, sua aplicagao em qualquer
operador é sem efeito.

A presente dissertacao se propoe a estudar o calculo do propagador de Feynman em dife-
rentes teorias gravitacionais. A primeira, e mais simples de todas, é a teoria de gravitacao de
Einstein-Hilbert, que corresponde ao modelo de graviton nao-massivo. Iniciamos o calculo do
propagador do graviton nao-massivo, levando em conta que a lagrangiana deste modelo é a de
Einstein-Hilbert, composta apenas pelo escalar de Ricci. O propagador neste cenario é bem
simples, obtemos apenas um polo que fornce a relacao de dispersao de ondas planas, resultado
tipico de propaga¢ao nao-massiva.

O segundo modelo abordado é o da gravitacao de E-H modificada por termos quadraticos do
tipo R? e R, R". Nesta ocasido, o propagador possui polos massivos que surgem dos coeficien-
tes de acoplamento presentes nos termos quadraticos. Salientamos que um modo massivo nao
indica necessariamente violacao da causalidade, ou seja, podemos encontrar modos massivos
causais em uma determinada teoria. Infelizmente, nao é este o caso da gravitacao quadratica,
verificamos que um dos modos de propagacao obtidos possui velocidade superluminal (v > ¢).

Seguindo com o célculo do propagador em modelos de gravidade alternativos, como a gra-
vitacao de Einstein-Chern-Simons . Embora essa teoria nao contemple acoplamentos com
campos de fundo fixos, o propagador obtido é modificado pela alteracao na estrutra do espago-
tempo, promovida pela insercao do termo gravitacional de Chern-Simons. Assim como ocorre
na teoria eletromagnética de Chern-Simons, nos deparamos com o surgimento de um termo
proporcional ao simbolo de Levi-Civita, que aponta para a necessidade de extensao da base de
Barnes-Rivers.

Por dltimo, fazemos uma revisao da ref. que consiste na obtencao do propagador do
graviton em uma teoria de campo com um setor que sofre violagdo da simetria d Lorentz. Nesse
modelo, levamos em conta que um acoplamento entre o escalar de curvatura e o campo bum-
blebee (B*), violador da simetria de Lorentz numa escala de altas energias (escala de Planck),
possua efeitos que possam ser observados em experimentos realizaveis em escalas de baixas
energias . A presenca do campo de fundo altera drasticamente a composicao dos operadores
que formam uma algebra fechada, assim a base de Barnes-Rivers precisa ser estendida. A ne-
cessidade de extensao da base de Barnes-Rivers aparece no momento em que a lagrangiana que
carrega os termos de VL ¢ introduzida, pois surgem estruturas novas que envolvem combina-
cOes entre os projetores transversal e longitudinal com o campo bumblebee (b,0.5 € bywag). A
extensao da base de Barnes-Rivers para este cenario foi apresentada em , a ideia por tras de
sua execucao é apresentada a seguir. Definimos os termos “estranhos” como novos operadores
simetrizados, calculamos as contracoes entre estes com o restante da base e observamos se a es-
trutura do resultado pode ou nao ser escrita em termos das ja previamente estabelecidas. Caso
nao seja possivel, adicionamos os termos diferentes como novos operadores de spin e repetimos
0 processo até nao haver mais o surgimento de termos estranhos . Nao é objetivo deste trabalho
obter a extensao da base de Barnes-Rivers no cenario de gravitagao modificada por termos de
violagao da simetria de Lorentz. Entretanto, faremos o calculo do seu propagador, analisando
a sua estrutura de polos e compatibilidade com o principio da causalidade.
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CAPITULO

Calculo do propagador para teorias de
campo de spin 1

O algoritmo que aqui serd empregado para o calculo de propagadores pode parecer bem compli-
cado para iniciantes. Tendo isso em vista, iremos fazer uma breve revisao deste procedimento
em uma teoria de spin 1 por ser mais simples. O modelo que usaremos para apresentar as nuan-
ces do calculo do propagador sera o de Maxwell-Carrol-Field-Jackiw (MFCJ) que é um modelo
que possui um campo de fundo (background) violador da simetria de Lorentz. Os primeiros
estudos feitos sobre este modelo foram realizados por Sean M. Carrol, George B. Field e Roman
Jackiw |1] e o propagador da teoria MCFJ foi obtido por . E necessario deixar bem claro que
a intencao deste capitulo nao é esmiucar a teoria de MCFJ, mas apenas familiarizar o leitor com
o método em um cenario mais elementar que o gravitacional. Dessa forma, nao iremos analisar
a estrutura dos polos obtidos a partir do propagador encontrado, daremos enfoque apenas ao
formalismo de projetores tensoriais empregado no célculo do propagador, bem como a extensao
da base de projetores, algo que serd recorrente nos capitulos que se seguem.

1.1 Propagador para a teoria de Maxwell-Carrol-Field-Jackiw

A acao do modelo de MFCJ é dada por

1 1 1
L= 4 OéBFaB o ZgaﬁpchaAﬁchp + i(auAu)Qa (1.1.1)

onde A" & o 4-potencial, V* = (14, V) & o 4-vetor fixo de violagdo da simetria de Lorentz,
etveB ¢ o simbolo de Levi-Civita, F,, € o tensor do campo de Maxwell e a ultima parcela de

(1.1.1) é o chamado “gauge-fixing”. Aqui o nosso objetivo & reescrever a eq.(1.1.1) em uma
forma conhecida como “quadratica”, o que significa escrevé-la na forma

L= A'D,, A", (1.1.2)

onde D, ¢ um operador tensorial. Podemos fazer isso reescrevendo, cada um dos termos que

compbem a lagrangiana (1.1.1):
FogFP = (0,45 — 05A,) (0“AP — 9°A) = 20,A50" AP — 20, A50° A“. (1.1.3)
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Vamos usar a derivada total para reescrever cada uma destas parcelas,

Ou (Ag0°AP) = 0, A0 A° + A0, 0~ A®, (1.1.4)
Do (A0°A%) = 0,450 A + A0, 0" A°, (1.1.5)

como a derivada total nao contribui para as equagoes de movimento, temos

FopF™ = —2A%n,s0A° + 2AP0,05A% = —2A%0,5A°, (1.1.6)
onde 9005
Oap = Mg = Wap,  Wap =~ (1.1.7)
sao os projetores transversal e longitudinal respectivamente. Finalmente,
1 1
- ns P = 5AﬁDeaﬁAa. (1.1.8)
Para a préxima parcela, temos
PPV A F,, = PPV, Ag (0,A, — D,A,), (1.1.9)
= PPV, A0, A, — PPV, Agd, A, (1.1.10)

Usando as simetrias do Simbolo de Levi-Civita, podemos obter

PPV, Agd,A, = —“PPPV, A0, A, — PPV, Agd,A,, (1.1.11)
= —2A5*PPPV,0,A, = —2A55°P A, (1.1.12)

sendo
S = g*brey 0, (1.1.13)

Vamos mudar a configuragao dos indices por questao de uniformizacao com o padrao inicial-

mente escrito na eq. (1.1.8)
1 aBpe 1 a B
—16 VQABFMO = 514 SaBA . (1114)

Por dltimo, tratamos o termo de “gauge-fixing”,
1 s 1
2¢ %

A eq.(1.1.13) nos traz um operador tipo Chern-Simons em (3 + 1) dimensoes. Ressalta-

mos que além de evidenciar a presenca do campo de fundo V,,, tal operador ¢ antissimétrico.
Substituindo as eqs.(1.1.8), (1.1.14)) e (1.1.15) na eq.(1.1.1)), resulta:

(9,A") (AP030,A%) = ——(APOwap A%). (1.1.15)

1
26

1
L= §Aapa5Aﬁ, (1.1.16)
onde o operador D,s, dado por:
O
Daﬁ = Deag — Ewaﬁ + Sa/j, (1.1.17)
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. ~ .. , . . 1 . ,
possui uma representagao matricial propria. A sua forma inversa D_; € o nicleo do propagador
que desejamos encontrar:

D (Do) ' =6, 7, (1.1.18)
D (Day) ' = Mg (1.1.19)

Analisando a eq.(1.1.17) podemos inferir, a principio, uma forma de escrever a inversa de D,g.
Esta seria composta por uma combinacao linear dos operadores [wag, g, Sas|, OU seja,

(Dow) ™ = a1aw + 0160y + €180 (1.1.20)

. —1 . . .
Assim, o operador (D,s)” pode ser obtido ao se determinar os coeficientes ay, by e ¢;. Para

encontrar estes coeficientes, substituimos ((1.1.20) na Eq. (1.1.19)):

U
DOCBD_IOW = (Dgaﬁ - Ewaﬁ + Saﬁ) (aflwoa/ + blgow + CISOW) )

]
_Waﬁ (alwau + blgau + CISCW)

DaﬂD_laV = D@alg (alwa,, -+ blem, + clSm,) — 5

+ Saﬁ (alwa,, + blea,j + Clsal,) . (1121)

As contracdes tensoriais existentes na expressao acima podem ser determinadas conhecendo a
algebra dos operadores, que apresentamos a seguir:

Wapw® , = Gcé)g 8;(9” = w,p. (1.1.22)
Oapw™y, = Wapl = Napw®, — Wapw®, = Wy, — wp, =0, (1.1.23)
WapS%y = Sapw®, = acgﬁnwaa“va@@ =0, (1.1.24)
por causa da antissimetria do simbolo de Levi-Civita nos indices a e ¢. Seguimos:
00p0%, = Napld®y — wapld®, = 0,5. (1.1.25)
003 S, = Sapld®y = Sap (0%, —w®)) = €app, VP 0%0%, = Sus. (1.1.26)
SapS%y = N SasS™ = NeEapp, V0PV, 0y (1.1.27)

Para finalizar, devemos conhecer o resultado
5“”"’\5QBW =0"g (5%5% — 5%6%) +0%, (5"&% — (5"55’\;) +0%, (5"5(5’\,0 — 5"p5A5) , (1.1.28)
que leva ao desenvolvimento:

€Yo VaOrVPO? = 675 (V,0,VP07 — V,0\V 707
+ (Vo05V 7507 — VsohVEOr) + (Va0,VP0" — V,05VP0%), (1.1.29)

SapS%y =mp, [VO — (V- 0)°] + (V- 0) 05V, — V5V, O] + (V3V?0,0, — V?050,), (1.1.30)
= (B +wyp) (VO = X?) —=OAs + X (Z0p + Zpy) — V0w, (1.1.31)

SagS* = 0,5 (VO =A%) — XNwyp + AE,5 — OAys = fos, (1.1.32)
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onde definimos .
Yug = VO, Vo0 = X, Yug = Bup + B, Mg =V, Vs (1.1.33)

O surgimento de termos novos envolvendo as combinacoes V,0, e V,,V,,, indica que necessitamos

introduzir os elementos [iw e AW} no conjuntode projetores inicial: [was, Gap, Sas), UmMa vez

que a algebra dos operadores inicialmente proposta nao é fechada. Logo, o operador inverso
deve ser proposto numa forma mais ampla, a saber:

D_low = A1 Wap + blﬁw + clsw + dliau + 61/\@”. (1134)

Vamos calcular as novas contragoes iniciando com ¥,

iaﬁwo‘y = (Va(‘)ﬁ + Vﬁﬁa) wa,, = /\wl,g + Eﬁy, (1135)

iaﬁgay = iaﬁ (504V — wo‘y) = iyﬁ — )\wyﬁ — Egy, (1136)

2085% = BapueS™ = Ny (Vs + V3a) eV, 0\ = 0, (1.1.37)
A

Aap® = 50, (1.1.38)

A
Aoa,é’eau = Aoaﬁ (504]/ - wau) = Ayﬁ - _Eﬂm

1.1.39
U

( )
AapS®, = NapnuuS™ = Vo Vae® V.05 = 0, (1.1.40)
Yo, = (Vads + V3a) VOV, = V25,5 + M3, (1.1.41)
Yo%, = (Vads + Vi0,) (VO + V,0%) = OV>w,5 + AX,5 + OA, g, (1.1.42)

AasA®, = VZA,5. (1.1.43)

Podemos organizar esses resultados na tabela a seguir.

w*, 0, S, X%, A%,
Wap ] 0 0 )\w,/g + 21,5 %Euﬂ
Haﬁ 0 Qyﬁ Syg EVB - /\w,,ﬂ - Eyg Ayg — %Eyg
Sap 0 Su3 fus 0 0
Eaﬁ )\wl,g + E,g,j Z,,g — )\wl,g — Z,Bz/ 0 DVZUJ,,g + )\Zyﬂ + DA,,/Q) szuﬁ + )\AV,B
Aoy | 225, A — 2%, 0 V255, + M5 VA5

Note que todas as contragoes calculadas enquadram-se no conjunto ja proposto: [was, Oag,
Sas f]ag e Aypgl. Se no processo de obtengao das contraces deste conjunto surgisse uma outra
estrutura diferente das inicialmente supostas, seria necessario introduzir este novo elemento no
conjunto e repetir a tarefa de calcular as contragoes (até que nada novo surgisse).

A algebra fechada obtida em [2| contém um total de 6 operadores, conseguimos feché-la com
apenas 5, o que se deve ao fato de considerarmos o projetor iaf}, que congrega dois projetores
de : Yap € Ypa. A vantagem é que o projetor f]ag é simétrico, enquanto .3 € g, nao
possuem simetria definida. Assim, obtemos

U N
DalgD_le =TMTp = (Deaﬁ - Ewaﬁ + Saﬂ) <a1way + bleau + CISaV + dlzoa/ + elAau> ’
(1.1.44)
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DaﬂD_lau - D‘gaﬂ <alwo<y + blgau + CISaV + dliau + elAch)
0

- Ewaﬁ (allwow + blgau + Clsau + dliau + elAau>

+ Sa,g (alwa,, + blgal/ + Clsal, + dlia,/ + elew> s (1145)

D*4D ™ oy = iy + 1085 + 0 (S = Ay — Tz ) + €1 (Ohys — ATy0)
— % (010w, + di0 (Awyp + Eup) + €1AE,4]

+ bS5+ e [ew (V20 = X2) = Mw,s + AS, 5 — DA,,B] . (1.1.46)
Agrupando os termos semelhantes,

DD ', = [0+ ¢ (VO = A)] b,

1 1
+ |:—d1|:|/\ — galm - Cl)\2 - gdll:')\:| Wy + [bl + Cllj] S,/ﬁ

1 1
+ |:Cl)\ — —dﬂj — 561/\ — 61)\:| Z,,ﬁ + [dﬂj + Cl>\] 2/3,/ + [61|:| — clﬂ} Ayﬁ. (1147)

3
Substituindo o resultado (1.1.47)) na eq. ((1.1.19) e, usando a relagao,
Mg = ‘911,8 + Wy, (1148)

podemos coletar os termos semelhantes nos projetores 0,3, w, 3, S,8, Xuvg, 2w € Ayg, comparando-
os com a eq. (|1.1.48]), de modo que escrevemos o sistema

O+ ¢ (VO-N) =1, (1.1.49)
1 1
d, O\ + galm + e\ + Edlm =1, (1.1.50)
bl + Cll:l = 07 (1151)
1 1
Cl)\ — Edll:' — 561)\ — 61)\ = 0, (1152)
d1|:| + Cl/\ = 07 (1153)
€1|:| — C1|:| = 0. (1154)
A solucao deste sistema é
1 A2 O
- _> by = 1.1.
MO O@-o—ove+ay T EoOvia (1.1.55)
1 A
=— dy = 1.1.56
TT oo YT Om_ovitae) (1.1.56)
1
e PR 7 e (1.1.57)
De posse desses resultados, o operador (Daﬁ)_1 assume a forma:
_ 13 A2 OJ
Das) ' =— | O
(Das) O am@_ovzLe) | YT [moove e
Sa A ~ A,
- 2 5 (1.1.58)

Zoz_ )
OVt e O -Ovia  E_Ovzix
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ou de forma simplificada

1

-1 _
Pes)” =7 (D2 —0V2+ )

{0000 = [€ (02 = OV 4 22) + X g = O (Sas + Aag) + ASas |

(1.1.59)
Escrevemos entao o propagador de Feynman da teoria de Maxwell-Carrol-Field-Jackiw no es-
pago dos momentos A,ga ::i(l)aﬂ)flz

i

Aos = —
RV —(Vp))

(P00 — [€ (0" +P°V2 = (V- D)%) + N wag

+ 7 [Sas (1) + Aas] = (V1) Sas (D)}, (1.1.60)

onde

Saﬁ (p) = _iEOé/BSOPVSOpm an,é’ (p) = Vapﬁ + V,Bpa- (1161)

Os polos do propagador sao

0 (1.1.62)
P+ p V2 —(V.p)P =0. (1.1.63)
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CAPITULO

Propagador para teorias gravitacionais

H4 um grande interesse fisico no propagador de uma teoria, em razao das informacoes que
podem ser extraidas do mesmo, a exemplo das relacoes de dispersao que descrevem como a
energia de um campo depende do momento linear. A causalidade também é um outro aspecto
que pode ser obtido a partir das relagoes de dispersao presentes no propagador. Na verdade, a
causalidade pode ser investigada e examinada a partir das relagoes de dispersao extraidas do
propagador, sendo uma propriedade importante para estabelecer a consisténcia de uma teoria
de campos no que tange a propagacao de sinais (transmissao de informacao), em atendimento
ao Principio da Causalidade.

O célculo do propagador requer a utilizacao de uma base de projetores. Para teorias eletro-
magnéticas, de spin-1, os chamados projetores transversal (6, ) e longitudinal (w,,) compdem
essa base, cuja denominacao se origina da forma como atuam no momento p, como veremos
na tabela Apesar de ser util para o campo eletromagnético, esta base de projetores nao
¢ adequada para o campo gravitacional, que possui spin-2. No caso eletromagnético, o spin
do campo em questao (foton) é 1, e a forma bilinear da lagrangiana sera compativel com pro-
jetores de dois indices; no cenério gravitacional, a lagrangiana do campo de spin-2 conduz a
uma forma bilinear com 4 indices tensoriais. A base de projetores adequada neste caso é a
de Barnes-Rivers e : composta por um conjunto de combinacoes lineares dos projetores
transversal e longitudinal linearmente independentes entre si, todos constituidos por estruturas
de quatro indices tensoriais.

2.1 A teoria do campo gravitacional

A teoria da relatividade geral de Einstein (TRG) [5] possui um dos legados mais bem sucedidos
na historia da Fisica. Enquanto a teoria da relatividade restrita (TRR) surgiu na tentativa
de compatibilizar resultados experimentais de Michelson-Morley |]§]|, a TRG teve origem em
tentativas de conciliar a TRR com a teoria de gravitacao de Newton. Tentar conciliar essas
duas teorias esbarrava em um problema: associar a estrutura geométrica do espago-tempo com
a gravidade . A TRR é uma teoria baseada no conceito de espacgo-tempo de Minkowski:
uma estrutura de quatro (3 + 1) dimensoes (trés espaciais e um temporal), na qual espago e
tempo passam a ser interpendentes. A quarta dimensao, o tempo, possui natureza distinta das
demais e isso se traduz no sinal negativo que surge quando escrevemos o elemento de distancia
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no espago de Minkowski [§],
ds® = ndatds” = —*dt* + da’® + dy? + dz?, (2.1.1)

onde 7, é a métrica de Minkowski com assinatura (—, +, +, +), dz* € um elemento infinitesimal
de de variacao do vetor posicao e ¢ a velocidade da luz no vacuo.

Podemos notar que a contrucao da TRR foi realizada por meio de dois postulados funda-
mentais e possui consequéncias geométricas como a relatividade da simultaneidade, dilatacao
temporal e contracao espacial, enquanto que a gravitacao newtoniana foi formulada em um
cenério de forgas de atracao. O campo g seria a origem dessa forca

g=— (2.1.2)

gerado por um objeto com massa M, G a constante de gravitacao universal e r a distancia
entre os corpos que interagem. Este campo tem origem no seguinte potencial

¢ (r) = —GM7 (2.1.3)

r

4

que é a quantidade béasica na gravitacdo de Newton. Aqui é importante mencionar que os
cenarios sob a acao da gravitacao nao podem ser descritos pela TRR, uma vez que os corpos
sujeitos a interacao gravitacional estao acelerados e nao se enquadram como referenciais inerciais
ademais, a gravitacao newtoniana nao explica a origem do campo gravitacional. Ao apenas
descrever como os corpos interagem e nao explicar a origem da interagao, a gravitacao de
Newton deixa a desejar em sua base conceitual. Nesse sentido, a principio, uma conexao entre
a TRR e a gravitacao deve conter duas principais caracteristicas: ressignificacao do conceito de
campo gravitacional, explicando a origem do campo gravitacional e o estabelecimento de um
novo principio de relatividade, que abrangesse os referenciais nao inerciais.

2.1.1 Principio de equivaléncia

Na TRG, a geometria do espacgo-tempo define a dinamica do campo que rege e transmite a
interagdo gravitacional. Esta geometria é representada pelo tensor métrico (¢"”), que é quem
assume a funcao de descrever a gravidade como campo propagante de carater universal, ou seja,
tudo que existe interage por meio da gravidade.

O estabelecimento de sistemas de referéncia é a primeira tarefa a ser realizada quando
se deseja medir alguma grandeza fisica. A propria TRR surge da necessidade de relacionar
as medidas feitas por observadores localizados em sistemas distintos sem discrepancia, pois
diferentes observadores devem obter os mesmos resultados para experimentos do mesmo tipo.
O primeiro postulado da relatividade de Einstein sintetiza o carater imutavel das leis fisicas
frente & mudanca de referencial inercial.

De modo anéalogo, o principio de equivaléncia advém de uma profunda reflexao acerca da
igualdade entre massa inercial e massa gravitacional , este principio afirma que experimentos
em um laboratorio em queda livre fornecem resultados que sao indistinguiveis dos mesmos
experimentos realizados em um referencial inercial no espaco vazio. A massa inercial ter o
mesmo valor que a massa gravitacional era uma ideia ja considerada por Newton, isso reforca
ainda mais a base conceitual para o estabelecimento do principio de equivaléncia que surge da
problematica na definicao de referencial inercial em um cenario de interacao que tudo afeta.
A origem desse pensamento comecou por volta de 1907 quando o Einstein questionou a si
mesmo a respeito de como a gravitacao de Newton deveria ser ajustada para ser compativel
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com a relatividade restrita. Neste momento teve o que ele proprio chamou de “pensamento mais
feliz da minha vida” ao imaginar que uma pessoa em queda livre ndo sentiria o proprio peso.
Portanto, a igualdade entre as massas inercial e gravitacional nao pode ser mera coincidéncia
e que esta deveria levar a uma ampla compreensao da inércia e da gravitacao.

Dentro da gravitacao newtoniana, ter massa ¢ um requisito para que um objeto perceba
fenomenos gravitacionais, a luz, assim, nao se enquadraria. No entanto a natureza se mani-
festa de forma distinta ao ideal newtoniano e a luz interage com campos gravitacionais. Essa
interagao nao ocorre porque a luz possua massa, mas o espaco-tempo que foi deformado pela
presenca de um corpo massivo. Imagine uma folha de caderno com pautas sobre uma mesa, as
linhas presentes nessa folha representam a trajetoria de um feixe de luz se propagando numa
regiao do espaco-tempo suficientemente distante de qualquer objeto capaz de produzir campo
gravitacional. Agora, se apenas segurarmos a folha pelos lados, sem esticar, e a levantarmos,
vamos observar a formacao de uma pequena depressao no meio da folha, e as linhas que antes
eram retas foram curvadas pelo peso da folha de papel. As linhas ainda representam o caminho
do feixe de luz, mas este deixou de seguir em linha reta e sofreu um desvio. Este é um dos
pontos mais delicados na TRG, pois ao considerarmos que um feixe de luz sofre um desvio na
sua trajetoria quando observada por um referencial acelerado, tendo em vista o principio de
equivaléncia, encontramos uma abertura para a verificacao experimental da TRG. Isso quer
dizer que se a luz ¢ desviada por objetos acelerados, serda desviada por campos gravitacionais
e isso poderia ser testado, basta haver um objeto com massa suficiente para gerar um campo
gravitacional capaz de alterar a trajetoria da luz e um dispositivo sensivel o suficiente para
observar esta alteracao. Tal experiéncia foi realizada em 1919, na cidade de Sobral-CE. Uma
expedicao confirmou com certo grau de precisao, a validade do principio de equivaléncia sendo
o comeco do legado de uma das teorias que melhor performaram na explicacao de fenémenos
conhecidos, como, por exemplo, a precessao do periélio de Mercurio e previsao de coisas que
até entao seriam inimaginaveis como as ondas gravitacionais e buracos negros.

2.1.2 Gravidade geométrica

A TRG descreve a gravitagao como um efeito da curvatura do espago-tempo [@[I De acordo com
o principio da equivaléncia, a gravidade pode ser anulada localmente, pois é possivel definir um
observador em queda livre, que é localmente equivalente a um observador inercial. E como se
tal observador experimentasse uma geometria de curvatura nula (localmente). Uma variedade
é justamente a entidade matematica que satisfaz essas condicoes, ou seja, a variedade é um
espaco continuamente curvo que localmente parece euclidiano. Por exemplo, em curtas escalas
de distancia, podemos afirmar que a superficie terrestre é plana o que nao é verdade de modo
global.

As equacoes de campo de Einstein sao fundamentais no estudo da TRG, estando para a
relatividade de Einstein como as equagoes de Maxwell estao para o eletromagnetismo. Podem
ser obtidas por meio do principio de minimizagao aplicado sobre a acao de Einstein-Hilbert,

S= / (% + £M) Vv—gd'z, (2.1.4)

onde R é o escalar de Ricci, k = 8mGc™* e L) representa a densidade lagrangiana que contém a
informagao sobre a distribuicao de matéria e energia. A variacao da agao é inicialmente escreita
como:

55 = o / 5 (V=gR) d'c + / 5 (v =gLrr) d'. (2.1.5)
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Vamos calcular termo a termo. Primeiramente,

6 (V=9R) = V=gdR + Ré (vV—9), (2.1.6)

que foi obtido no apéndice [A] Assim, podemos reescrever a primeira integral em (2.1.5) como:

T O
+ o / Va (90T, — g"*6T ) v/—gd'z,

2K

onde fizemos uma mudanca nos indices contraidos. A segunda dessa integrais é nula, por se
tratar de uma derivada total, nos restando apenas calcular a variacao para o termo Ly/v/—g

5 (eary=g) = L= g OV 55, g (217)
- oy =) sy O LEUVZD (5 (218)
note que
(Lyv/—yg ) _ (Lyv/=9) w 0 (Luv=9) )
o0 20 =0 [y | 4 gy e @19
Logo,
9 (Lyv—g) ) (Luv=yg ) (Lyv=9) .
5 (Luv/=9) = ~ o 5g" +aa{ G 5g" } aa[ 9 (0ug™) ]5 (2.1.10)

rearranjando os termos

5 (Larv/—g) = {% — Oa [%Hég“wa { é‘fg\/;)é W] . (2.1.11)

Assim, a segunda integral em (2.1.5)) se torna

Jotsearee [ {2558 0 (el o

+/aa[ éﬁ(g“/;)d W] d'z, (2.1.12)

o termo entre colchetes é zero por se tratar de uma derivada total, j4 o termo entre chaves é a
defini¢ao do tensor energia-momento T, [12]

9 (Larv/—9) O (Lyv/=9)
T, =——F—->— —— . 2.1.1
H dghv Do 0 (0ag™) ( 3)
Finalmente, pelo principio de minima acao,
1 1
6S = o (R — Rg,w) SgM/—gdix — —/ AN —gdgtdie, (2.1.14)
1
(58 == / |:RMV - §ng,1/ - K/T;U'V:| 5glu,y\/ —gd4l' - O (2115)
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1
R, — §R9W = KT),. (2.1.16)

A eq. ¢ um conjunto de seis equacoes diferenciais para a métrica, pois a simetria
nos indices reduz as dezesseis equagoes iniciais para um total de apenas dez e a Identidade de
Bianchi reduz esse nimero em ainda mais quatro equacoes ﬂg]l

Em contrapartida as equacoes de Maxwell a equacao tensorial acima é nao-linear, essa
conclusao é bem o6bvia pelo fato de o escalar de Ricci ser composto por derivadas de segunda
ordem da métrica. Aqui o campo gravitacional nao tem origem no potencial newtoniano, a
gravidade é a deformacgao na geometria de uma regiao do espaco-tempo devido a presenca de
um corpo massivo. Outra observacao importante é que o termo a esquerda nas equagaoes
de campo de Einstein representam a geometria de uma determinada regiao do espago-tempo,
enquanto o termo a direita representa um termo de fonte, ou seja, a distribuicdo de matéria
e energia nessa mesma regiao. Assim, podemos afirmar que o Einstein encontrou uma relacao
matematica que descreve como a geometria do espaco-tempo é afetada sob a presenca de uma
fonte de matéria.

Apesar de origens completamente distintas, essas duas teorias devem ser compativeis com
algumas consideragoes. Podemos fazer esta afirmacao tendo em vista o sucesso que a gravitacao
newtoniana teve antes de Einstein. O chamado limite newtoniano é definido por meio de trés
condicoes: as particulas se movem com velocidades nao relativisticas, o campo gravitacional é
fraco (podendo ser considerado como uma pequena perturbacao no espago de Minkowski), e o
campo é estatico (ndo varia com o tempo). A métrica que resulta da solu¢ao das equagoes de
Einstein nesse cenério é a seguinte ﬂgﬂ

-1-5% 0 0 0
0 1-% 0 0
MY c?
g 0 0" 1-2 o , (2.1.17)
0 0 0o 1-5

onde ¢ é o potencial newtoniano.

2.2 Calculo geral do propagador em (3 + 1) dimensoes

Nesta secao vamos calcular a forma geral do propagador para teorias gravitacionais nao-
massivas. A ideia é retomar o procedimento visto no capitulo 2, mas para os operadores
da base de operadores de Barnes-Rivers que em D dimensdes é formada pelo conjunto a seguir

[17]

1
/Elll?ﬁ)\ = 5 (QMHWV)\ + Q;M(*‘Jun + el/fiw,u)\ + eu)\w;m) ) (221)
@ _1 1
P,w/,n)\ - 5 <9MN‘9V)\ + e,u)\eun) - meuuen)\, (222)
o0 _ 1
P,uzz,m)\ - meul/gn)u (223)
PO = wwea, (2.2.4)
o 1
P/,SB,RQA : - ? (eul/wﬁ)\ + en)\w;uz) s (225)

22



onde

9;11/ - 77/11/ - wl“” (226)
IV
Wy = ppf . (2.2.7)

No entanto, a nossa abordagem inicialmente ocorrera num cenério em (3 + 1) dimensoes

1
P;Ell/?n)\ = 5 (ewka + QM,\CUVH + QVKCUHA -+ (9,,)\(4.)#”) , (228)
@ _1 1
P,ul/,n)\ = 5 (eunew\ + e,u)\emi> - geuuefc)\y (229)
_ 1
P = 3OO, (2.2.10)
PO = Wi, (2.2.11)
a1
P(O ol = = (Quuwm\ + eﬁkwuu) . (2212)

AN \/g

As contracoes dos projetores transversal e longitudinal estao contidas na tabela (2.1]), a seguir
vamos calcular algumas contragoes e exibiremos a tabela completa.

Opa | O | O

Waa | 0 | wuw

Tabela 2.1: Algebra dos projetores transversal e longitudinal

1
P;Ezlz?n)\P(l)HAﬂﬁ = 5 (e;mwu)\ + GMAWVH/ + Hunw,u)\ + Hu)\wun)
1
x5 (0%aws + 0*qw™s + 0% gy + 150", ) , (2.2.13)
1
PPV a5 = 1 [Ounwnn (0% aws + 07 aw"s 4 0% g0’ o + 07 gw" )

+ 0wk (9“aw>‘5 + 9’\aw”5 + 9”ﬂw’\a + (9’\3@)“&)
+ Ouwpn (HnawAB + GAaw"g + Gﬁlgw’\a + Hklgw”a)
+9y,\ww (Qﬁaw)\ﬁ + QAawﬁg + Hnﬂw)‘a + Qkﬁwna” s (2214)

usando os resultados da tabela (2.1, temos

1
Py PR g = 5 Ouatus + Oupva + Ouawys + Oupia) = Py s

1 1 1 1
PO PR 5 Ousthon + 0,300) = geuyem} x {5 (650675 + 0%00%5) — 59@9”*} |
(2.2.15)
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| 1
PO = 2 Opnbir + 0u0) (%00 + 02a0"5) — 2 (%05 + 02a6"5) 0,01
1

1
. (0,05 + 0,00,) 000" + §ewemeaﬁw, (2.2.16)

P(Q)

AN

2 K 1 1 2
P;EV?/{)\P(Q) >\7Oéﬁ = 5 (Q;Laeuﬁ + euﬁeua) - geuugaﬁ - P;Eu?aﬁ' (2217)
P(O—Q)P(O—G)NA _ 19 0 19 9'{)\ _ 39 0., — P(D—H)
TN aB — g wlrx X § af = § mwap = 17 08 (2218)
o PO 5 = w3 wap™ = Witwag = Pl (2.2.19)
Pl PO Ly — lemﬁm x (apw™ + 0 wag) = Lﬁuywaﬁ. (2.2.20)
1222 ’ 3 \/§ \/g

Aqui devemos fazer um importante comentario. As contracoes que envolvem os projetores

0-0) (0—w) 0—bw) _~ . .
Pog: Pivas € P nao é comutativa, ou seja, ao trocar-se a ordem o resultado muda.

Observe:
(0-6w) H(0—6)xA 1 1 X 1
P;w,/w\ P of = % (euvwﬂ)\ + em\w,uu) X §9a60 = %wuyeaﬁ~ (2221)
P(O*w)P(ofow)m\ _ 1 0 KA en)\ _ 1 0
of = WipWex X 7 (Bapw™ + 0" wag) = %ww B (2.2.22)
—ow _ 1 1
LESHQA I PO = 7 (0w + Orripu) X wasw'™ = ﬁ@wwaﬁ- (2.2.23)

0—6w —Ow)k
( )P(O ) )\,aﬁ _

1
= % (Qw,w,{,\ -+ em\wm/) (9a5w”’\ + 0){)\&)&5) 3

L
V3

AN
1 KA KA 1 KA KA
— geuyw,{)\ (9a5w +0 wag) + 59,{)\0.1“,, (Hagw + 6 wag) ,
1 - —w
= 30ubop + Wutas = PO+ PO (2.2.24)

Seguindo o método acima, o leitor pode verificar que calcular o restante das contracoes ¢ um
processo relativamente cansativo, por isso sua omissao torna-se razoavel. A tabela completa
da 4algebra dos projetores de Barnes-Rivers é mostrada a seguir Note que todos os resultados
obtidos no célculo dessas contracoes podem ser escritos em termos dos operadores contidos
no conjunto das eqgs. (2.2.8) - (2.2.12)), a razao disto reside no fato de este conjunto possuir
todas as combinagoes lineares entre os projetores transversal e longitudinal que sao linearmente
independentes entre si. Isso quer dizer que ((2.2.8)) - (2.2.12)) representam todas as combinagoes
possiveis entre w,, e 0, nao-redundantes.

Depois da apresentacao da base a ser utilizada, seguiremos com o calculo geral do propa-
gador para teorias gravitacionais. O procedimento que iremos adotar consiste em escrever a
lagrangiana da teoria na forma

1
L= Eh“”o,w,aﬁhaﬁ , (2.2.25)
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- P](Dl()f;’aﬁ P(z)ngaﬁ P(oegmw P(ot))mw P(Oeg)“,aﬁ
f% :i #(y)’aﬂ P 0 0 0
P9 0 0 P 0 %ewwa 5
P 0 0 0 Pl %wweaﬁ
P 0 0 %wweaﬁ %e,wwaﬁ pPo 0+ Pl )

Tabela 2.2: Algebra dos operadores de Barnes-Rivers

que é conhecida como forma bilinear por apresentar o operador bilinear O,, o3. A forma mais
geral para este operador é

Ouu,aﬁ - alp(l) —+ CLQP(2) + (lgP(O—Q) -+ G4P(0_w) + (I5P(0—0w), (2226)
cuja forma inversa pode ser escrita como
@;}/17&/8 — blp(l) + b2P(2) + b3P(0—0) + b4P(O—w) + bSP(O—Gw)‘ (2.2.27)

Aqui cabe enfatizar duas coisas importantes: o objetivo é escrever os coeficientes b's em termos
dos a's, e que o operador O, .3 possui duas simetrias em seus indices, tais simetrias advém
da propria estrutura da base de Barnes-Rivers. A virgula que separa os indices tensoriais dos
operadores em dois pares serve para indicar as simetrias mencionadas, ou seja, um projetor
qualquer X, o possui uma simetria relacionada a permutacao entre os pares separados

Xuvap = Xopuw, (2.2.28)
e uma associada a permutacao nos indices dos proprios pares

Xuwap = Xoppa- (2.2.29)
Conhecendo-se a seguinte identidade que pode ser demonstrada por inspecao direta

1 1 2 0-0 0—w
Luvap = 5 (Muatlvg + Nvallus) = PO s+ P2 4+ PO PO (2.2.30)

e usando a prescricdo comum da literatura OO~ = 7, temos

IHV@B = ((llp(l) + a2P(2) + CLSP(O—H) + a4P(0—w) + a5P(0—9W)) X
(b1 PV + by PP 4 by PO 4 b, PO) 4 PO~

desenvolvendo e usando os resultados da tabela (2.2

_ —w - 1 «
+ P(2) + P(O 0) + P(O ) = as (b3P,LEIOJ,CM9ﬁ) + ﬁb5plii,(35)
+ alblP(l)

1)
2) (0-w) , 1 (wb)
,LLI/,CMﬁ + a2b2P,u'V’a6 + a4 (b4p;u'l/’a6 + %bSPMyzaﬁ)

uv,aff

1 1

(w8) (6w) (0—0) (0—w)
+ as |:\/§b3pleaﬁ + \/§b4p,ul/,a,8 + b5 (P VB + P >:| ’

Iz pv,o8
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Ow) P(w@)

D ( _ B
onde, por simplicidade, escrevemos Pas = 0,wap € o = W lags-

PO L p@

) s+ PO+ PO 4 PO = (agby + asbs) Pl t)

},LI/,&B [U/7056 -
+arb PO+ ashs PP + (ashs + asbs) PO
P(W‘9)

1 " 1
+ ﬁ (a3b5 + a5b4) PIEIGAOZB + % (CL4b5 + CL5Z)3) w,o’

comparando os coeficientes, obtemos o seguinte sistema:

ahy = 1, (2.2.31)
ashy = 1, (2.2.32)
asbs + asbs = 1, (2.2.33)
asby + asbs = 1, (2.2.34)
asbs + asby = 0, (2.2.35)
asbs + asbs = 0. (2.2.36)

Este sistema nao possui solucao direta, vamos escrevé-lo na sua forma matricial e, por meio do
escalonamento, verificar se uma das equagoes é combinacao linear das outras

ag 0 0 0O O 1
0 ao 0 0 O 1
0 0 a3 0 ay 1
0 0 0 a4 Qas 1
0 0 0 a5 a3 O
0 0 as 0 Qg 0

Multiplicando a linha 6 por ag, a linha 3 por —as e substituindo a linha 6 pela soma das novas
linha 3 e 6

(2.2.37)

agz 0 0 0 0 1 a; O 0 0 0 1

0 ap 0 0 0 1 0 as 0 0 0 1

0 0 az 0 as 1 .| O O —asas O —a? —as

0 0 0 a4 Qs 1 0 0 0 ay as 1 ’ (2238)
0 0 0 a5 a3 O 0 O 0 as as 0

0 0 a5 0 a4 O 0 0 0 0 azay —a? —as

multiplicando a linha 5 por —ay, a linha 4 por as e dividindo a linha 3 por —as

a; 0 0 0 0 1 ap 0 0 0 0 1

0 as 0 0 0 1 0 ay O 0 0 1

0 0 —asas 0 —ag —Aas ~ 0 0 as 0 as 1

0 0 0 ay as 1 0 0 0 asas a? as

0 0 0 as as 0 0 0 0 —a40as —asQy 0

0 0 0 0 azay —ai —as 0 0 0 0 asay —a: —as

(2.2.39)
substituimos a linha 5 pela soma das linhas 4 e 5 e dividimos a linha 4 por as;

ap 0 0 0 0 1 ap 0 0 O 0 1
0 ay O 0 0 1 0 ao 0 O 0 1
0 0 as 0 as 1 ~ 0 0 as 0 as 1
0 0 0 asas a? as 0 0 0 ay as 1 (2.2.40)
0 0 0 —agas —asay 0 0 0 0 0 a—azay as
0 0 0 0 azas — ai —as 0 0 0 0 agagz—a? —as
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Finalmente, substituimos a linha 6 pela soma das linhas 5 e 6

az 0 0 0 0 1 az 0 0 0 0 1
0 aa 0 O 0 1 0 ao 0 O 0 1
0 0 as 0 as 1 ~ 0 0 as 0 as 1

00 0 ai  as 1 0 0 0 ai a5 1 (2:2.41)
0 0 0 0 a}—azaq as 0 0 0 0 a—azay as
0 0 0 0 azaq—a? —as 0 0 0 O 0 0

Desde que a; # 0, ay # 0 e a? — azas # 0, obtemos um novo sistema

a1b1 = 1, (2242)

CLQbQ = 1, (2243)

a3b3 + a5b5 = 1, (2244)

a4b4 -+ a5b5 = 1, (2245)

(a? — a3a4) bs = as. (2.2.46)

Observe que uma das linhas da matriz representa uma equacao do sistema e que uma dessas
linhas foi zerada, isso significa que uma das equacoes poderia ser escrita como combinagao
linear das outras. O processo de aplicar operagoes elementares em cada uma das linhas dessa
matriz, além de garantir que a solucao a ser obtida para o novo sistema é exatamente igual
a anterior, s6 conduz a linhas nulas se houver ao menos uma linha redundante. As primeira,
segunda e quinta equagoes possuem solucao direta

1 1 a
bhh=—, by=—, by=-—5—v. (2.2.47)
aq a2 G5 — azay
As duas restantes podem ser resolvidas facilmente, uma vez conhecido o valor de bs, a terceira
equacao torna-se

CL3b3 + CL52L =1— bg = _ZL (2248)
ag — azay a5 — a3aq
A quarta
a a
asby + 0,5% =1—b = —%. (2249)
as — a3y a5 — azaq
Assim, a solucao final é
1 1
b= —, by=— by=—— (2.2.50)
aq as az — G304
as as
by = ——— by = —, 2.2.51
* al —agay 0 a2 —asay ( )
e o propagador assume a forma
1 1
O} 5=—PW 4 —p® _ QL po-6) _ # po—w) 4 QL po-—tw).
’ aq Qa9 a5 — a30y a5 — a30y Ay — a304
1 1 1
ol ,=—pPYV4 —_p®_ __ —  (qPO0 4 qyP0 ) _ q,p0-0) 2.2.52
paB g + as CL% — asay (a4 T a5 ) ’ ( )
ou na forma de Feynman A, .5 = i(’);iaﬂ
D =i |~V oy Lpe L () pOt) | pO-) o plo-t)
uv,af — a uv,a8 as uv,af CL% — asay 44 a0 34 uvaB 54 pv,afB :

Em resumo, o célculo do propagador para teorias gravitacionais tera como regra o seguinte
roteiro:
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1. Escrever a densidade lagrangiana na forma linearizada por meio da prescri¢ao

gul/ - T],ul/ + h[uu- (2253)

[\

. Obter a forma bilinear da lagrangiana linearizada, ou seja, reescrevé-la sob a forma
L= 1h“”(’) he?
=5 waph™ . (2.2.54)

3. Reescrever o operador O, . em termos dos operadores da base de Barnes-Rivers.

4. Identificar os coeficientes ay, as, as, a4 e as e substituir na eq. (2.2.27).

2.3 Propagador para o graviton livre

O propagador mais simples ¢ o do graviton livre. De imediato podemos inferir que s6 havera
um polo no propagador, sendo este equivalente a relacao de dispersao que se obtém para ondas
gravitacionais planas, ou seja, s6 existe um modo de propagacao da interacao gravitacional
neste cenario. Mais adiante, veremos que em outros quadros o propagador apresentard mais de
um polo e estes estarao associados as constantes de acoplamento dos termos introduzidos.

A densidade lagrangiana adequada para a obtencao do propagador do graviton livre é

L=Lp y+Lop, (2.3.1)

onde Lg_p ¢é origindria da acao de Einstein-Hilbert, cuja forma explicita é

Sp_n = /\/—ngx‘l, (2.3.2)

e Lo_p €0 termo de fixagdo de calibre (gauge-fixing)

1 1 1
Lo = % (E)Vh“” — 58‘%) (8’%% — éé)uh) , (2.3.3)
sendo o uma constante adimensional. Existem diversos tipos de gauge na literatura [17], o que
adotamos neste trabalho recebe o nome de de Donder. A introducao de um termo de gauge-
fixing é aqui necessaria, pois Lg_ g possui uma simetria de gauge local originaria da linearizacao
(2.2.53). De fato, a lagrangiana é invariante sob a transformacao de coordenadas infini-
tesimal

=t (x), (2.3.4)

onde & (z) é um vetor infinitesimal que depende de z*. Com isso, o escalar de Ricci, que
compoe a acao (2.3.2)) é invariante sob a seguinte transformacdo no campo h,,

Py () = hy (2) — 0,6, () — 0,8, (). (2.3.5)

conhecida como transformacao de gauge. Essa transformacao nao altera a fisica do campo
gravitacional que ¢é representado pelo tensor h,,, ou seja, independente da forma do vetor
€. (x), o campo gravitacional serd exatamente o mesmo. Assim, temos uma liberdade de gauge
sobre o campo h,, que pode ser interpretada como uma livre escolha do campo h,, dado pela
expressao ([2.3.5).
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Seguindo os passos descritos na secao anterior, iniciaremos escrevendo a expansao da la-
grangiana de Einstein-Hilbert em segunda ordem (veja o apéndice

1 1 1 1
Lo =—70"hdah + 5aahaﬁhaﬁ + Zamagavhaﬂ — 586%78@%. (2.3.6)

No caso especifico do escalar de Ricci é necessario os termos de segunda ordem, a justificativa
esté no fato de os termos de primeria ordem serem derivadas totais e nao possuirem uma forma
quadratica no campo h*¥, requisito imprescindivel para obtermos sua forma bilinear. Aplicando
a regra do produto de derivacao podemos reescrever as parcelas de forma conveniente

0% (hdyh) = 0*hduh + hOh, (2.3.7)

0% (hd°heg) = 0°hd hag + hO“0° hag, (2.3.8)
O (hagOyh®?) = 07hag0yh™ + hasOh, (2.3.9)
9% (K 0uhgy) = 0P K™ Dyhg, + h*70°Oohs, . (2.3.10)

Observe que podemos substituir diretamente esses termos, pois as parcelas que possuem deri-
vadas totais nao irao contribuir. Logo,

1 1 1 1
Ly = 7hOh - §haaaﬁha5 — Zhaﬁmhaﬁ + 5ff%vffaafw,y. (2.3.11)

Vamos agora usar a métrica para expressarmos a lagrangiana linearizada na sua forma bilinear

1. (1 1 .
EE'*H = §h'u (Qnuunaﬁm - npyaaa/j - inuanyﬁm + nyaaﬁau> h ﬁ (2312)

Trabalhando com a parte correspondente ao termo de fixacao de calibre, no intuito de também
reescrevé-la na forma bilinear

1 1 1
_p=— 10, —=0"h 0"h,e — =0,h |,
_ ! O,h" 0" h e — 18 h** 0, h — 18“h0“h + 13“/1(9 h (2.3.13)
20\ 7 o9 . 2 oy ) o
Por meio da renomeacao de indices contraidos da terceira parcela entre parénteses, temos
1 v e v Y
Lo = % 0,h" 0" hy. — O, WM O, + Z@ ho,h | . (2.3.14)

Novamente, reescrevendo as parcelas em termos de derivadas do produto e desprezando os
termos relacionados a derivadas totais, resulta

1
Lop = %

1
(h@u&,h’“’ — " 0,0% by — ZhDh) : (2.3.15)

usamos a métrica para expor a sua forma bilinear

1 1
‘CG—F = %huy (77,”8&85 — ﬁy/gauaa — Z_an’naﬁm) ha’B. (2.3.16)
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A lagrangiana total £ = Lg_y + Lo_r, na sua forma linearizada ¢ a seguinte

1

L1 1
L= §h/‘ 577MV77Q6D — 77“”0@85 - EnwnyﬁD + nmaﬁ@

1 1
+ (muc’?a@g — N0, 00 — Zﬁ;wﬁaﬁD)} hoP . (2.3.17)

de onde extraimos o operador

1 1
Ouvap = 577uv77aﬁm — N O0a0 — 577uoﬂ7uBD + Ma0u03

1 1
+ a (nuuaaaﬁ - nuﬁauaa - Znuynaﬁm) , (2318)

que constitui o nacleo estrutural da lagrangiana

1
L= Eh“”(’),wyaﬁhaﬁ : (2.3.19)

2.3.1 Simetrizacao do operador O e calculo do propagador

Observando atentamente o operador da eq. , podemos observar que existem parcelas
que nao satisfazem as simetrias presentes nos projetores da base de Barnes-Rivers, eliminando
a possibilidade de serem escritos em termos dos mesmos. Neste caso, torna-se imprescindivel
a simetrizacao de cada uma das parcelas nao-simetrizadas, tal simetrizacao pode ser realizada
facilmente ao usarmos o fato de que as componentes simétricas de um tensor podem ser escritas

como .
A(ul/) = 5 (Auy + AI/H,) . (2320)
Nos valemos deste resultado sustentados pela possibilidade de qualquer tensor ser dividido em
duas partes: uma simétrica e outra antissimétrica e também pela condicao de o operador O
ser bilinear no campo h*¥, esta segunda afirmativa anula a componente antissimétrica que
decorre da primeira. Assim, quaisquer termos que nao possuem simetria definida podem ser
simetrizadas por meio da eq. (2.3.20)). Deve-se ter bastante cuidado ao aplicar esse método,
antes de tudo é necessario observar se a parcela a ser simetrizada ja nao possui alguma simetria
como em 17),,,0,03, os indices da métrica e as derivadas parciais comutam, logo ha apenas uma
simetrizacao a ser feita
1

Nuw0a0s = 5 (1 0a0s + 1as0u0,) (2.3.21)

em seguida, temos o produto de duas métricas 7,,7,3, j& existe uma simetria presente

1
Nallos = 5 (Muallp + Mustva) (2.3.22)

a ultima 7,,0,,03 nao possui qualquer simetria a ser aproveitada tornando necessario aplicar o
método de simetrizacao duas vezes

1

nuaapaﬁ =3 (nyaauaﬂ + nuﬁauaa) 3
2
1

) (109498 + Mua0u0p + MO0 + 150 0a) ,

= N30 0a- (2.3.23)
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Desse modo, os termos simetrizados correspondentes serao

1

n,u,yaaaﬂ - 5 (np,uaaaﬂ + naﬁa,uau) ) (2324)
1

Muallvs = 5 (uallus + Musve) (2.3.25)
1

Nva0,0p = 1 (00,08 + Mua0,05 + 1,80,00 + 1,50,04) , (2.3.26)

ou ainda no espago dos momentos

1

NuvPaPp = 5 (n,uz/pozpﬁ + naﬂp,upu) ) (2.3.27)
1

Nuallvs = 5 (Muallus + ustva) (2.3.28)
1

,r/l/Oép,Uzpﬂ - 1 (nyapupﬁ + T]uapypﬂ —I'_ nyﬂp“pa + T]uﬂpypa> 5 (2329)

Substituindo todas essas parcelas, agora simetrizadas, na eq. (2.3.18)

1 1 1
Ouu,a,@ = §nuu77aﬁ|:| - 5 (nuuaoaaﬁ + naﬁauau) - Z (Woﬂ?uﬁ + nuﬁnVOé) O
1 111
+ Z (nmauag + n,mayag + Uygauaa + nugayaa) + 5 (77“”8(185 + nagauay)

1 1
_4_1 (Uyaauag + nmayag + nygﬁ,ﬁa + ngal,aa) — ZnﬂVna/BD . (2.3.30)

Agora devemos usar as identidades dos operadores de Barnes-Rivers listadas abaixo

MuMag = 3PUO70 4 pO=@) 4 \/3p0-0), (2.3.31)

N 0a0p + 10p0,0, = 2P0~ 4 /3P0-0%) (2.3.32)

NaDu08 + 140000 + 1,50,00 + 150,00 = 2PY) + 4P~ (2.3.33)
Mot + MupTve = 2 (PO 4 pO==) 1 pM) 4 p@) = (2.3.34)

para entao escrever:

1

Oumaﬁ = 5

O

1
_Z (2 pO—) 4 /3 p(0-0w) ) O- (PO-0) 4+ pO=) 4 p() 4 p@)
(PW 2P0~ ‘”)El+l !
[0

1

4

N | —

i b <2P(O—w) 4 \/§P(0—0w)>
1
-3 (P 4 2p0-w)) — (3P<°—9) + PO 4 JﬁP“‘”‘”))] O, (2.3.35)

agrupando os coeficientes semelhantes

dov — 3 O O N \/' O
vaB = Op-9 - —ph _ —p® _ — pO-w pO=t), 2.3.
Ot ( 4o ) 2a 2 4o (2.3.36)
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Com isso, é possivel identificar os coeficientes

O O _(ta=3\ 4 O /30
MW="9y @77y BT 4o o MT TS BT T

necessarios para escrevermos o propagador do graviton livre por meio da eq. (2.2.52))

20 2 e 1 4o —3 V3
ot —_Zpl_Zp@_ 2 ___p0-0 4 = *pO-w __ Y p0-buw)
uvof O O O\ 4o A 4o ’
20 2 PO-9 _ (40 — 3) PO-w) 1 /3 P0-0w)
ol s=——=rY - Zp@ : 2.3.37
was = — 55 P~ 5P+ _ (23.37)
Uma outra forma de escrever o propagador acima é usar a notagao de Feynman
Apvap = 1O, 00 (2.3.38)

onde A, a5 ¢ 0 valor esperado no vicuo do produto temporalmente ordenado dos campos,
resultado presente no estudo de Teoria Quéantica de Campos (TQC)

Apvap (X =¥) = (O[T [hyu (x) hag (¥)]] 0) - (2.3.39)

Assim, no espago dos momentos, o propagador da teoria gravitacional de Einstein-Hilbert sera

+ (da — 3) PO _ plO-0) _ \/§P(°*"“>] . (2.3.40)

2 wv,af pv,af pv,af pv,af

Apas = z% 2P . +2P%)

Note que o tnico polo do propagador é

cuja relagao de dispersao associada é

P’ =py—Ip[*=0. (2.3.41)

A velocidade de grupo desse modo de propagacao pode ser obtida por meio da relagao

dpo
= — 2.3.42
ug d ‘p‘ ) ( )
logo,

ug =1, (2.3.43)

que coincide com a velocidade de fase uy

Po

up=-—=1. 2.3.44
! |p| ( )

Note que a propagacao de sinais na teoria gravitacional de Einstein-Hilbert é causal. Nessa teo-
ria o graviton, particula mediadora da interacao gravitacional, possui velocidade de propagacao
igual a do foton, que é a particula mediadora da interacao eletromagnética.
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2.4 Unitariedade tree-level

A gravitacao de Einstein-Hilbert, por ser uma teoria classica de campos, precisa exibir propa-
gacao de sinais consistente com o principio de causalidade e com a unitariedade. Logo, o modo
nao-massivo p? = 0 dos gravitons nao deverd produzir excitacoes de norma negativa. Usaremos
esta afirmacao para encontrar um resultado que servird de baliza para as préximas anélises
de unitariedade, por meio do mecanismo de saturagao do propagador por correntes externas
conservadas (p,J* = 0). A anlise dessa secdo serd voltada para as excitagdes usuais do gra-
viton (descritas no bojo da teoria de Einstein-Hilbert). Iniciamos nosso estudo apresentando o
propagador saturado e discutindo quais projetores contribuem de fato para a saturacao. Com
isso, a saturacao do propagador é dada por:

SP = J" Res [Au.ap] J*. (2.4.1)
Usando o propagador (2.3.40f), temos

2i 2i do — 3) PO=w) — pl0=9) _ /3 p(0-6w)
SP = J"Res | = PW 4 2 p® 4 (o= 3) V3

p? p? p?

JP.(2.4.2)

Ao observarmos os operadores da base de Barnes-Rivers, podemos notar que todos os que sao
proporcionais ao projetor longitudinal w,, gerarao contribuigao nula em razao da conservacao
da corrente, ou seja

1

JMVP;LV aﬂ‘]aﬁ 2J (Guawl/ﬁ + euﬁwya + Hyawuﬁ + 9y,8¢duq) JQ’B - O, (243)

T PO T8 = T, w05 = 0, (2.4.4)
v p(0—0w) 7o v

J,M P uv,af J b= Jﬂ (Q,uvwaﬂ + eaﬂw,uu) J of — =0. (245)

Apenas dois contribuirao, sao estes p? rP9 0 primeiro resulta ser

uraf € Hpvap

a8

1
TR, (T = S Gl + Busbua) T~ 0y

1
= Jog P — 3 (J%). (2.4.6)

Note que a contracdo em 6, funciona como levantamento/abaixamento de indices, uma vez
que 0, = 1 — Wy, enquanto a contribuigao advinda de w,,, se anula. O segundo foi calculado
acima, logo

1
Jwp Saeﬁ)‘]aﬁ — g (Jaa)2 ) (247)

Considerando apenas os termos nao nulos, obtemos a saturacao:

1 08 214 Lo
SP = iRes [p (QJQBJ p_ 3 (J*)? — 3 (J a)zﬂ ;

. 1 « a \2
= iRes L? (2Jap " = (J%) )] : (2.4.8)
A partir da conservacao da corrente, podemos derivar as seguintes relagoes
Joo = p—“fc Jeas (2.4.9)
Dy

De
JOa — _Jca- (2410)

Po



. 2
que nos permitem reescrever a 2.J,5.J%° — (J%,)” como se segue

200 T — (J%0)? = 2Jop % + 20,5 — (0 + J%)7, (2.4.11)
= 2J00% + 2J0a % + 200 + 2000 T — (Joo — Jaa) - (2.4.12)
Independentemente da assinatura usada para a métrica, teremos Jyg = JY, Jo, = —J%, Jou =

J. Assim, temos:

2Jap ] = (J%0)" =2 (Joo)” = (Joo)” + 200
— (Jaa)? = 2(Joa)® = 2 (Je0)? + 2 (Jea)? . (2.4.13)

Usando as egs. (2.4.9)), temos

pachca)2

2 g I — (o) = WebeTe)”  opabe ;g
Do Do
2 2
(Jaa>2 —9 (chca) _9 (pajca) + 9 (Jca)2 : (2414)
Po Po
agrupando os termos semelhantes, resulta
af a \2 pachca ? 2 (pcjca)2 2
2Jo5 ] — (J%)" = 5— tJaa | +2(Jea)” — 44— —2(Jua)”- (2.4.15)
Po Po
Logo, o residuo em p? = 0 sera dado por
Res|» 2y = (p“pcjca 4 )2+2(J )2—4M—2(J )2
p2—|p|*=0 p% aa ca Do aa) >
a. C‘]C(l 2 CJCG, 2
- (p be? +Jaa) +2 (o)’ _ 4 Peden) 2 (Jaa)?,
p| p|
e a saturacao do propagador
pachca ? 2 (chca>2 2
SP =1 + Joo | +2(Je) —4————2(Jw)"| - (2.4.16)
Ip[? |

A informacao que deve ser ressaltada é a seguinte: para que a gravitacao de Einstein-Hilbert
seja unitaria, a parte imaginaria do residuo da saturacao deve ser positiva. Assim, a expressao
acima, deve ser também positiva. Portanto, decorre:

(pachca (chca)2

- —2(Jaa)” > 0. (2.4.17)
p| p|

2
+ Jaa> +2(J,0)—4

2.5 Graus de liberdade (abordagem 1)

Nesta se¢ao vamos discutir sobre os graus de liberdade do campo gravitacional, dentro da teoria
de Einstein-Hilbert. Seguiremos um procedimento similar ao adotado na Ref. para efetuar
essa analise e chegaremos a conclusao de que essa abordagem nao ¢ adequada em se tratando
de teorias invariantes de calibre.
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Note que o campo h*” possui em principio um total de 16 componentes independentes, mas,
a existéncia da simetria entre p e v reduz esse niimero para apenas 10. A equacao de movimento

obtida da lagrangiana ([2.2.54)) é dada a seguir

Oaph™ =0, (2.5.1)

onde o operador O é o mesmo da eq. ([2.3.36). Iniciamos por contrair a eq. (2.5.1)) com ptp”,

ou seja,

P’ Oy aph®” = 0. (2.5.2)
A forma do operador O esta presente na eq. (2.2.26]), assim
s R R ek [T L

Portanto, para obter o resultado da equacao anterior, devemos contrair os projetores ([2.2.8))-
(2.2.12) com p'p” individualmente:

D G N
p'p Pp(u(i,aﬁ? = §pup guueab’ =0, (2.5.4)
1
p’upVP;Ezlz?aB = §pﬂp’/ (euawl/ﬁ + euﬁwua + ezjawuﬁ + Quﬁwua) = O, (255)
MV (2 o v 1 1
PP, s = PP 5 (0uabup + 0,5000) — gelweag =0, (2.5.6)
PP P = D s = P’ (2.5.7)
uv,af PP WuWaps D Wag, 0.
14 0790.) 1 v 1
pMp P;Eu,aﬁ) - %p/ﬁp (e;wwoa,é’ + eaﬁwuu) = %pgeaﬁ- (258)
Com esses resultados, a eq. (2.5.3) torna-se:
2 as af
D (a4wa5 + ﬁ%ﬂ> h*” =0, (2.5.9)
onde
Oash™® = h — waph®”, (2.5.10)
resultando em
aswash® + % (h — wash®®) =0, (2.5.11)
<a4\/§ = a5> Wash®® + ash = 0. (2.5.12)

Lembrando que para a lagrangiana de Einstein-Hilbert, vale:

1 V3

— 2 - - 2.5.13

Q4 4ap ) Qs 4ap ( )
encontramos: \/_ \/_
2v3 3

S Pwash® — ZEp?h =0 2.5.14

4oy P Wap 4ap ’ ( )
afs 1 2

DPapph®” = =p°h, (2.5.15)

2
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que constitui uma primeira equacao de vinculo sobre os graus de liberdade da teoria. Seguindo
a investigagdo, realizamos uma segunda contragao entre a eq. (2.5.1)) e n*:

0" Oy aph™ =0, (2.5.16)
” -0 —w —Ow «
1 0P s + Py + asP ) + arP ) + as P 5| he? =0, (2.5.17)
Realizando a contragao de n* com os projetores, temos
4 _9 1 14
77“ P;Ez(i,aﬂ) = 377“ euveaﬁ = Qaﬂa (2518)
1

T]HVP;E,ZI/?QIB = 57]‘“’ (0pawup + 0,5wna + Guawys + Oupwua) =0, (2.5.19)

1
/r’NVP'LEIQ/?OzB = 5 (eyaeuﬁ + eyﬁeua) - eaﬂ = eaﬁ - 904,3 =0, (2'5'20)
nuuplsl(l_a‘g) — U”unuwaﬁ = Wag, (2521)
PO = ¥ (Ot + i) = —= (3 + Oa). (2.5.22)

" V3 V3

Substituindo estes termos em (2.5.17)), resulta

Kag + %%) Oy + (a4 n \/§a5> waﬁ] hed — 0. (2.5.23)

Sabemos que

4o — 3\ 1, V3
5= — = =2 2.5.24
as ( Aoy ) b, Q4 4ap € as 4&p ; ( 5 )
logo,
(20 — 1) Oap + wap] R =0, (2.5.25)
200 — 1)

apsh®® = Qa-1) 2.5.26
PaPs 2a—1)" ( )

Combinando (2.5.26) com a eq. (2.5.15)), decorre
h=0, (2.5.27)
Papsh™® = 0. (2.5.28)

As egs. (2.5.27) e (2.5.28]) representam dois vinculos sobre as componentes de h*”. Por ultimo,
calcularemos a contracao,

puowaﬁhaﬂ =0, (2.5.29)
P01 Py s+ axPyos + asF o+ aaP ) + aspﬁg;%w)] W = 0. (2.5.30)

Novamente, fazendo a contracao em cada uma das parcelas separadamente,

_ 1
puP/ES,ofé? = §pu9uu9aﬁ = 07 (2531)
1 1
p“P/Ell,?aﬁ = 5}9“ (6/1404(-*]1/5 + eﬂﬁwlja + eljaw‘uﬁ + 9,/,3(,«)#&) = 5 <6yap5 + Ql,gpa) s (2532)
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1 1
PP =1 5 (Ouals + 0u00a) — 3Oubas| =0, (2.5.33)
PPPOE) = pP,ap = Putas, (2.5.34)
0—0w 1 1
HP}EV’OCB ) ﬁp# (Quywag + eagww,) = ﬁpyeag7 (2535)
que ao subsituir em ([2.5.30)), resulta
1 1
§a1 (0vapp + 0upDa) + AspLwas + ﬁag]p,ﬁaﬁ h? =0, (2.5.36)
onde /3
Ly Ly 3 5
- - = —~"p? 2.5.
ap 2ap o Qg 4&29 ,  As 4ap (2.5.37)
Finalmente, encontramos
(QGVBpa + DvWap — pueaﬁ) haﬁ = OJ
2pah®, — p,h =0, (2.5.38)
e, como ja conhecemos h = 0, temos
pah®y = 0. (2.5.39)

Esta equacao estabelece um total de 4 vinculos, que ao juntarmos com aqueles expressos nas eqs.
(2.5.27) e (2.5.28) totalizam 6 restricoes. Assim, das 10 componentes de h*’, restam apenas:
10 — 6 = 4. Note que essa abordagem nao elimina completamente os graus de liberdade nao-
fisicos na teoria de Einstein-Hilbert.

2.6 Graus de liberdade (abordagem 2)

Vimos na se¢do anterior que o método de contagem adotado por [22], ndo funciona em teorias
invariantes de calibre. Para obter corretamente as componentes propagantes de h*", seguiremos
a mesma abordagem do Weinberg , com alguns elementos do Schutz . Com o intuito de
auferir corretamente os graus de liberdade da teoria gravitacional de Einstein-Hilbert, vamos
considerar a solugao para ondas planas (solu¢do homogénea). As equacoes de Einstein, em sua
forma homogénea (7, = 0), sdo dadas por:

1
R;U/ - §Rg;uz == 07 (261)

que em primeira ordem em h*® pode ser escrita como (veja o anexo [C)):
Ohy — 0,05h°,, — 0,05h", + 0,0,h + 1,,0005h™ — 1,0k = 0. (2.6.2)

A eq. (2.6.2)) pode ser reescrita usando a transformagao,

. 1
h;w = h,u,l/ - 577,u,1/hy (263)
que implica em B ) ) )
Ohy — 0,057, — 0,05h°, + 100057 = 0, (2.6.4)
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A transformacao dada por (2.6.3) é conhecida como trago-reverso, pois,
h', =h=—h. (2.6.5)

Como ja mencionado na secao , a lagrangiana de Einstein-Hilbert é invariante sob a trans-
formacao,

hyuw () = hyy (2) = 008 () — Gpéy () (2.6.6)
portanto, também o serd. Aplicando (2.6.6) em (2.6.3)), podemos obter uma transfor-
macao que torna a eq. invariante, dada a seguir

h;u/ — B,w/ - 8V€},L - augu + nuuaagav (267)

cuja derivada fornece: B B
0"hy, — 0'hy,, — U, (2.6.8)

Visto que a eq. (2.6.4)) é invariante sob a transformagao (2.6.7)), ha uma liberdade na escolha
do vetor &,, vamos escolher um tal que a eq. (2.6.4) seja uma equacao de onda. Escolhemos
entao,

0¢, = 0h,, =0, (2.6.9)
que ao substituirmos na eq. (2.6.4), fornece a seguinte equagao de onda:

Ohy,, = 0. (2.6.10)

Vamos agora analisar as solugoes da eq. (2.6.10)). Sabemos que uma equacao homogénea forma
uma base que fornece as solugoes para sua versao nao-homogénea. Escrevemos a solugao da eq.
(2.6.10)) na forma: B

Py = € exp (ipax®) + €}, exp (—ipax®), (2.6.11)
onde e, é um tensor simétrico conhecido como tensor de polarizacao. Aplicando essa solucao
na eq. (2.6.10)), temos

pap® =0, (2.6.12)
que reproduz o resultado (2.3.43). Ja a condicdo (2.6.9) implica em

puet, = %pye“y. (2.6.13)
Como vimos, e, ¢ um tensor simétrico, logo possui apenas dez componentes independentes.
Tal simetria decorre diretamente do fato de BW também ser um tensor simétrico. Assim, tendo
em vista a eq. , as componentes independentes de e,, se reduzem a apenas seis. No
entanto, ha apenas dois graus de liberdade propagantes dentro da teoria gravitacional, ou seja,
somente duas dessas componentes tém significado fisico. Sabemos que a equagao (2.6.10)),
dentro da escolha denotada pela eq. , ¢ invariante sob a transformacao (2.6.7), vamos
propor uma forma especifica para o vetor §,, e verificar como essa mudanca afeta a solucao

(2.6.11)). Seja,

&, = i€, exp (ipax®) — i€, exp (—ipax®), (2.6.14)
temos:
0,€,, = —ipy&u exp (ipar®) — ipuk), exp (—ipar®) . (2.6.15)
Logo,
Wy, () = hy (1) = 0,8, () — 0,8, (x) (2.6.16)
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torna-se:

B, () = € exp (ipat®) + €5, exp (—ipaz®) — 9,€, (x) — D&, (z) . (2.6.17)
Ao substituir (2.6.15]) na expressao acima, obtemos o resultado
1, (x) = €, exp (ipar®) + €, exp (—ipaz®) , (2.6.18)
onde
€ = v + Do+ Db (2.6.19)
Observe que a solugao possui a mesma forma de (2.6.11)). Portanto, €], e e,, repre-

sentam a mesma fisica independentemente da escolha do vetor £,. Além disso, uma escolha
arbitraria de &, possui quatro componentes distintas (uma para cada indice livre). Logo, as
componentes independentes de h,, se resumem a apenas duas (6 —4 = 2), que sdo os dois graus
de liberdade fisicos na teoria de Einstein-Hilbert.
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CAPITULO

Alguns modelos alternativos de gravitacao

A teoria da relatividade geral tem sido amplamente testada por diversos experimentos ao longo
dos anos, e sempre tem se provado bem-sucedida nao apenas na que diz respeito a verificacao
experimental, mas também na previsao de novos efeitos como as ondas gravitacionais. No
entanto, a despeito de seu sucesso experimental, a TRG proposta por Einstein nao se enquadra
no rol das teorias de campo renormalizaveis, sendo incompativel com o Modelo Padrao. Neste
capitulo abordaremos o célculo do propagador em duas teorias gravitacionais alternativas a de
Einstein-Hilbert: gravitacdo com termos quadraticos e em (2+1) dimensdes.

Uma acao que contenha termos quadraticos em teorias gravitacionais, pode ser generica-
mente escrita como [10]:

S = /d":c\/—g (R + o R? + asR" R, + 39" 0, RO, R + ) ,

onde os coeficientes «; representam constantes de acoplamento e a reticéncias termos diversos
que podem ser construidos pela combinacao dos escalar e tensor de Ricci. Neste trabalho abor-
daremos apenas as trés primeiras parcelas, o restante serd desconsiderado por nao possuirem
contribuigao significativa, mas apenas complicacoes indesejadas.

3.1 Propagador para teorias gravitacionais quadraticas

Dando continuidade & aplicacao do método geral para a obtencao do propagador de teorias
gravitacionais, exemplificaremos seu calculo para um caso diferente do anterior: uma teoria
gravitacional com termos quadraticos em R e I, na agao. Tais teorias surgiram da tentativa de
encontrar uma alternativa viavel dotada de altas derivadas e , teoricamente consistente
com os dados experimentais e que seja renormalizavel. Tais teorias, por sua vez, trazem consigo
um outro fator: modos massivos que surgem por conta dos termos de altas derivadas associados
com os termos R? e R R,,,. Tais modos podem ser um problema, pois a massa do graviton é
extremamente limitada. No entanto, a despeito dessa problemética, calcularemos o propagador
neste cenario, onde notaremos o surgimento dos modos massivos que decorrem diretamente dos
polos obtidos no propagador.
A lagrangiana para este caso é a seguinte e

L=Lp g+ %RQ + %R‘“’RW 4 Lor. (3.1.1)

40



As constantes o e 7 possuem dimensdo de massa igual a —2 ([o] = [y] = —2). J& conhecemos
a forma bilinear da parte correspondente & agdo Einstein-Hilbert e a fixagao de calibre. Resta
entao lidar com os termos quadraticos dos escalar e tensor de Ricci. Usando a forma linearizada
do escalar de Ricci, escrevemos:

R? = (0,0, — Oh) (0,03h*" — Oh),
= (8,0,h" 0, 05h*" — 8,0,h"*Oh) — Ohda0sh®” + OhOh. (3.1.2)

Seguindo os mesmos passos ja apresentado em se¢oes anteriores, temos
R2 = pH (—nm,aaﬁgﬂ — na/gaﬁl,lil + UuVTIQQDQ -+ GH(?,,@&&B) haﬁ. (313)

Partindo da forma linearizada do tensor de Ricci consideramos a seguinte expressao para o
quadrado do tensor de Ricci:

1
R Ry = 5 (950,h°, — Ol — 9,0, + 950,h° )
1
X 3 (0“0"hH, — Oh* — O*0"h + 0%O*h",) . (3.1.4)
Desenvolvendo e renomeando os indices contraidos de forma conveniente, resulta

R™ Ry, = ~ (200,17 ,0°0" W o + 2050,h° ,0°0" ",

— 40,0,h00" K o — AT, 00" hY
+20h,, 0" b + Dhy OB™ + 0,0,h0"0"h) . (3.1.5)

A

Novamente, podemos reescrever estes termos por meio do recurso da derivada total,

1
R Ry = 7 (—2h,,s00%0"h", — 20,0, W
+2h" 0,0,0,05h" + W h,,, + hPh) . (3.1.6)

Usamos a métrica para subir ou descer convenientemente indices tensoriais,

1 1
RIWRIW = hM*¥ (—Eny/gé,ﬁoﬂ — én,wc“)a@BD

1 1 1
+§8M8V6a85 + ZHMQUVQDQ + 4_177#”77045D2) haﬁ, (317)

de modo que podemos reescrever a lagrangiana total na forma
1
L= §Wowaghaﬁ : (3.1.8)

onde o operador O, .3 ¢ dado por

1 1
Ouvap = 577/»1/770455 — 0o — 577uoa77uﬁD + a0y

+ o (—nu,,aaaﬁm — 1a30,0,00 + nu,,nagD2 + 8M8V8a85)

1 1 1 1 1
+19 (‘5%8@5 = 3w 0ads0 % 500,009 % ool + Z"W"O‘BDQ)

1 1
+ a (nuuaaaﬁ - nuﬁap,aa - Zﬁuyﬁaﬁm> . (319)
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Novamente, surgem termos que necessitam ser simetrizados. Lancamos mao das das eqs.
(2.3.24) - (2.3.26) para obter

1 1 1
Ouma,@ = §nuu77a,3|j - 5 (nuuaoaaﬁ + naﬂauau) - Z (nuanuﬁ + nuﬂnua) U

1
+ 1 (1000108 + Mua0,0p + Ny50u0n + 150,04)

1 1
+o [_5 (100008 + 1M0p0,0,) O — 9 (0005 + 1as0,0,) O + T]F“/naﬁmz +0,0,0405

1
+ % [_Z_L (nuaauaﬂ + nuaavgﬁ + nVﬂauﬁa + 77#138”80‘) B

1

1
D) (n;waa86 + naﬁauaV) 0+ 8uauaa86 + 1 (nuanuﬁ + nuﬁnua) 02

1 111
+§nuunaﬁlj2:| + a {5 (nuuaaaﬁ + 770468#811)

1 1
~1 (7711048#8/3 + nuaayag + 771//3(9#8& + T]#gal,aa) — L—lm“,nagD] . (3.1.10)

O operador (3.1.10)) pode ser expresso em termos dos projetores de Barnes-Rivers (2.2.812.2.12)
usando-se relacoes do tipo (2.3.3142.3.34)). Encontramos:

O,uu,aﬁ = % ( P(O—@) + P(O—UJ) + \/§P(0—0w)> 00— % ( P(O—w) + \/§P(O—9w)> 0

(P9 4 pO=) 4 p) 4 PO 4 % (P 2P O

+o [—3 <2P(0“") + \/§P(0‘9“)> 02 — % (2P(°‘“) + \/§P(0‘9“’)> [

N —

2
i <3P(0—.9) 1 plo-w) | \/gp(()—ew)) o2 4 DQP(O—W)]

DO |2

{_% (p(1) n 2P(0—w)) 2 _ % <2P(O—w) 4 \/§P(0—ew)>
L O2PO) 4 L (po-o) 4 po-) | p) | pe)) 2
2

+% <3P(0—9) + P(O—w) + \/§P(O—9w)> D2:|

4L B <2P(0‘“) + \/§P<O—GW>> - % (PY) 4 2pP0=)
[0

1
- (3p(0—9) 4+ pO—w) 4 \/§P(0_‘9‘”)>] 0. (3.1.11)

Agrupando os termos semelhantes e fazendo as simplificacbes cabiveis, resulta

O 5= (40{ — 3) |:| —+ 4@ (30' —+ 7) |:|2 P(O_g) . EP(O_W)
122417 4& 40(
2
— Ep(l) _ (= p2 _ @p(o—ew)' (3.1.12)
2c 4 4o
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Assim, o propagador para a teoria gravitacional quadratica dada na lagrangiana (3.1.1))

2c 4 4o [
Ol —_“Ypuy___ % p@e _ _ = plo-o)
prof O 200 — y[02 (Bo+9)XB+02 | 4a
2
L (da—3)0 +44a (B0 + 1) o) _ \fm P(O_ew)] (3113)
o «
que pode ser reescrito como
2a 4 4o
-1 (1) (2) (0—w)
- —pH_ __—~— __p@_—p
pf O 200 — /02 O
1
+t Ge T AT (Pw*@) +3P0-) 4 \/§P(0*9‘”)> . (3.1.14)

Escrevemos também o propagador na forma de Feynman no espago dos momentos

Apvap = 1O, 0 (3.1.15)
Dy = p% 20P,) 5+ 55 P + 40 By )
e 71) o (PO +3P0S + ﬁpjﬂ;ig’))] . (3.1.16)
cujos polos sao
p* =0, (3.1.17)
24+ p* =0, 3.1.18
(30 + ) p? ip1 = 0. 53.1.19;

Como haviamos mencionado no inicio desta secao, os novos polos que emergem desta estrutura
estao associados aos termos de altas derivadas. O primeiro polo que surge fornece a seguinte
relacao de dispersao

2 2
p = —my,

p(% - |p|2 = _mi

po = =1/ |p[* —m?, (3.1.20)

onde m? = % A velocidade de grupo associada vale

g — 1Pl (3.1.21)

2
Ip|” —mi

Vemos que u, > 1 para v > 0, o que implica em violagao da causalidade. Podemos ainda
calcular a velocidade de frente de onda (uy)

m
Uf: lim Po - L

00— =1. 3.1.22
[p|—o0 [P p ( )
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Ambas as condigoes u, < 1 e uy < 1 sao necessarias para assegurar a a causalidade do modo
propagante. Logo, para esse modo massivo ser compativel com os requisitos da causalidade,
deve valer v < 0.
Para o segundo polo, temos a seguinte relacao de dispersao
p* = ms,

p = |p|* +m3,

po = +\/|p|° + m? (3.1.23)

onde m3 = ﬁ, que fornece velocidade de grupo subluminal:
Ug = L < 1. (3.1.24)
Ip|* +m}

Neste caso, a velocidade de grupo é subluminal, sempre que (30 + ) > 0. Em resumo, para
assegurar que os modos massivos dessa teoria sejam causais, deve valer:

v <0, (3.1.25)
30 +v>0. (3.1.26)

3.2 Unitariedade tree-level

Para analisar a consisténcia deste modelo, faremos a analise por meio do mecanismo de sa-
turacao do propagador de Feynman com correntes externas. Isso nos permite encontrar uma
expressao que forneca a norma das excitacoes associadas a cada uma das relagoes de dispersao,
a unitariedade ¢ assegurada quando a norma das excitacoes de todos os estados é positiva. Po-
demos identificar a norma dessas excitacoes observando o sinal da parte imaginaria da saturagao
do propagador dada por

SP = J" Res [Au.as) I, (3.2.1)

onde J*” é um tensor simétrico que descreve uma corrente externa conservada p,J" = 0.

Uma vez observado que a corrente externa é conservada, nem todos os projetores terao
saturagao nao-nula, isso s6 ocorrerd nos termos nao proporcionais a wy,. Assim, como ja
obtido, teremos

1
J'LWP;EIQ/?aﬁ‘]aﬁ = Jaﬂ‘]aﬂ N § <‘]aa)2 ) (3'2'2)
_ 1
R e 329

Usando o propagador de Feynman (3.1.16[), podemos escrever o propagador saturado por cor-
rentes conservadas como sendo

JapJ®? = L(J°0)°  m3 (J%)
i<2m§ i 3 (J%)” | m (J%)" ) | (3.2.4)

p* p* +mj 3 p?—mj

SP = iRes

Devemos entao avaliar o residuo da saturacao nos dois termos e em cada um dos polos de
interesse. Assim, o residuo para o polo p?> =0 é

1 1
Res|,_o =2 (Jaﬂjaﬁ -3 (Jaa)Q) -3 (J%)?,

= 20,5 J% — (J%)%.
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Retomando o resultado da eq. (2.4.11)), temos

2m?2 | 2 [ pape. 1 2 (pe. )2 5 1 9
Res 20 — —t|= ( Lo + _Jaa) - 2& + Jca - = Jaa )
a. CJCQ 2 cha 2
_ (p ‘p : + Jaa) +2(Je)? = 4 (Pedea)” o S (Joa)?, (3.2.5)
p

que é idéntico ao resultado obtido para a saturacao dentro da teoria de Einstein-Hilbert. Po-
demos entao concluir que este modo ¢ unitario. Avaliamos o segundo polo p? +m? = 0,

1
Res‘ngrm%:O = -2 (Jaﬁjaﬁ — § (Jaa)Q) . (326)

) 2
Somamos e subtraimos o termo % (J*)", a fim de obter:

Reslpngo = =2 (Joad® = 3 (%) = 3 (%)

que implica em

a cha ? cha 2 1 a cha ?
R€S|p2+m%:0 = — (pr—Z + Jaa) + 2 (Jca)2 - 4M - 2 (Jaa)2 _g (pr—2 - Jaa) 9
|p| —my |p|2—m% |p| —my
(3.2.7)

onde usamos

Observe que neste caso conseguimos escrever o residuo do propagador em termos de duas
parcelas positivas, precedidas de sinais negativos indicando que esse modo é nao unitario.
Finalmente, para p> — m3 =0 :

1 «

Resl g0 =35 (J o), (3.2.8)
1 pachca 2

R€S|p2—m§:0 = § (m — Jaa> s (329)

que é um termo claramente positivo, implicando na unitariedade do modo. Como pode ser
observado nos resultados acima, alguns modos sao provém excitacoes com norma negativa
incorrendo na conclusao de a teoria de gravitacao quadratica ser nao-unitéaria, tal afirmacao
esta de acordo com [I7] .

3.3 Propagador para gravitacao de Chern-Simons

A gravitagdo de Chern-Simons foi introduzida inicialmente por Giddings et. al em 1984 ,
como uma preparacao para o estudo de modelos de gravitacao quantica. Neste trabalho, fo-
ram obtidas informacoes relevantes sobre a estrutura das equacoes de Einstein em diferentes
situagoes, e a sua principal conclusao é a seguinte. Em trés dimensoes, a teoria da relatividade
geral nao possui graus de liberdade propagantes, ou seja, ao findarmos o calculo do propagador
encontraremos um polo que nao estaré associado a qualquer modo de propagacao.
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Temos uma probleméatica semelhante na teoria gravitacional linearizada: a solucao das
equagbes de campo usando a aproximagao de campo fraco (weak-field) possui solugao trivial,
isso indica que nao existem ondas gravitacionais em trés dimensoes.

Aparentemente nao possuir graus de liberdade propagantes parece indicar um problema,
mas é justamente esse fato que torna a gravitagdo de Chern-Simons interessante. Ao se mo-
dificar uma teoria, torna-se relativamente complicado separar os graus de liberdade dinamicos
proprios da teoria daqueles advindos de sua modificacdao, enquanto no cenario da gravitagao
tridimensional esse problema desaparece por nao haver graus de liberdade.

O estudo de teorias gravitacionais em baixas dimensoes pode ser realizado por meio do
acoplamento do termo de gravidade de Chern-Simons a lagrangiana de Einstein-Hilbert

L=Lp_yg+Lc_s+ La_F, (331)
sendo Lo_g a lagrangiana de Chern-Simons:

1 2

onde 7 é uma constante com dimensao de massa 1.

3.3.1 Extensao da base de Barnes-Rivers

A insercao do termo de Chern-Simons torna a base de Barnes-Rivers insuficiente para o célculo
do propagador, ou seja, deixamos de ter uma &algebra fechada para os operadores de projecao
de spin em (2+1) dimensoes. Assim, surge a necessidade de estendé-la a fim de tornar possivel
o calculo do propagador. Nesse intuito, vamos escrever a lagrangiana de Chern-Simons na sua
forma bilinear e entao extrair o novo operador que ird completar a base.

A forma linearizada da lagrangiana s tera contribuicoes da primeira parcela, por
ser é quadratica no campo h*, enquanto a terceira parcela é cibica no simbolo de Christoffel
e, consequentemente em h*”. O termo de interesse é

1 14 K
Lo s= EGM | YO A (3.3.3)
Usando a forma linearizada do Simbolo de Christoffel, temos
1
Lo_g = S—GAMVUPWUMS (a,ih)\w + Mo — &ﬂhM) (auaph,,g + Qﬁyhp(; — aua(shp,,) , (334)
T

desenvolvendo e desprezando as parcelas com derivadas sucessivas em p e v, (que sdo nulas por
causa do simbolo de Levi-Civita), encontramos:

1
Loms = = [(O1r0,Dphus = O WrD,Dhyn) + (031D, Dphs — Onh* 0,05k )

— (0°h°20,0, b5 — 0°h°20,05h,)] -

Observe que o segundo termo entre parénteses se anula por uma simples redefini¢ao nos indices
contraidos e que as parcelas restantes se somam pelo mesmo motivo, de modo que obtemos:

1
Loog= EEW (°h*30,0,hus — O° P20, 05hy) - (3.3.5)
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Integramos por partes e usamos a métrica para extrair a forma bilinear

1
£C*S = 4—6/\#,/h,p)\8” (an(s - 8pa6) h&/, (336)
T
que pode ser expressa em termos do projetor transversal:
1
47

Los hPA 0 €50 50" . (3.3.7)

Note que a expressao acima nao estd simetrizada, o processo de simetrizacao ocorre de acordo
com os procedimentos ja estudados, fornecendo:

Lo g= ihpADau (quezﬁ + €50px + €puston + 6pu>\91/6) hov. (3.3.8)
4t 4
ou ainda . -
Lo-s = §hp’\ (ES’)’\"S”) v, (3.3.9)
onde 1
Sp/\,éz/ == 5 (Sz\uepé + Séyep)\ + Sp(;e,/)\ + Sp,\el,(;) s (3310)

é o novo operador projecao de spin que ird compor a base de Barnes-Rivers. Neste operador,
temos
Saﬁ = mqwg, (3.3.11)

que é o mesmo termo de Chern-Simons do eletromagnetismo. Observe ainda que S,y 5, possui
as seguintes simetrias

Sp)\,51/ = S)\p,z/5 = _S6V,p)\~

O sinal negativo na ultima permutacao esta relacionado com a propria estrutura antissimétrica
do simbolo de Levi-Civita que compoe o termo de Chern-Simons.

De posse do operador adicional, devemos obter uma &lgebra fechada de projetores que
viabilize o cdlculo do propagador dessa teoria definida em (2+1) dimensdes. Para isso, vamos
calcular as contragoes nao nulas entre S,, .5 € a base de Barnes-Rivers, que em (2+41) dimensoes
torna-se

P;Ei?n,\ = % (Ourwin + 0uawik + Ouewpn + 0awpe) (3.3.12)
Py = % (0,007 + 0,700 — 0,0052) (3.3.13)
P = %Gwﬂm, (3.3.14)
P = W, (3.3.15)
Pl = % (Ouwwir + Oxwpw) , (3.3.16)
S % (Sunbor + Surbum + S + Surbiu) - (3.3.17)

Em (3.3.12) o fator 1/2 j4 era esperado, afinal o cenério tridimensional nao afeta este projetor
bem como (3.3.15)). Ja em Pﬁ?m\, P;E?/;ﬁ\) e Pﬁﬂ;ﬂ”) a historia é diferente. Se olharmos para a
defini¢ao dos operadores de Barnes-Rivers em D dimensdes ([2.2.1] , podemos notar que a

dimensao do espaco-tempo abordado altera a forma destes projetores.
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Como ja discutido, a obtenc¢ao do propagador requer o célculo das contragoes dos operadores
que compoem a algebra. Neste sentido, devemos calcular as contragoes que envolvem S, 5.
Afirmamos que apenas duas serdao nao nulas, a primeira delas é:

“ 1
S/LV,&APQ)K)\’aB — = (€uorOun + €uorbun + €vorbun + €vorbus) X 5 (0%@9/\5 + Qkaenﬁ _ Qagem) 7
(3.3.18)
= Z (E}LO'KQV)\ + euov\ewi + 61/0'5‘9#)\ + EI/O')\HMH) (9%9% + (9)\049'{6) .
Desenvolvendo o produto e agrupando os termos semelhantes, resulta
80'
Sy PO 5 = 5 (€uon0us0" o + €uor0ual s + €00xl,u50%a + €0ox0ual’5) (3.3.19)
onde reescrevemos as parcelas de cada uma das parcelas de (3.3.19) usando
o K o K 8Haa o
8 6#0,.@0,,56’ a — 8 Eygﬁgylg 5 a 0 = 8 eugaeyﬂ. (3320)
Assim,
(2)kA 97
S'Lwy,{)\P af — 7 (E,LLO'OLQV,B + E,LLO'BQVQ + ewoﬂuﬂ + engW) == Syu,aﬂ‘ (3321)
A outra contra¢do nao nula é apresentada a seguir (detalhes no apéndice [D)):
SurirS™ a5 = —40OP (3.3.22)
S/,LV,I{)\SH)\,QB = —-20 (P(O_e) + P(Q)) + O (2P(0_0) — 2P(2))
= —40P®. (3.3.23)

Note que o processo de calcular as contracoes entre os operadores de Barnes-Rivers e .S, 3 nao
conduziu a uma estrutura nova, por exemplo outras combinagoes entre Sy, e 0, ou com w,,.
Isso significa que a dlgebra estd completa apenas com a introducao de S, qs- E importante
fazer esse comentério porque caso surgisse termos diferentes dos ja conhecidos, seria necessério
a inclusao dessas novas estruturas como operadores independentes e a repeticao do calculo das
contragoes até que isso nao mais ocorresse. Finalmente, completamos a tabela com a algebra
dos operadores de Barnes-Rivers estendida para a gravitacao de Chern-Simons, exibida na

tabela (3.1]).

3.3.2 Calculo do propagador do graviton em (2-+1) dimensoes

Apo6s a obtengao da base a ser utilizada num cenario em (2+1) dimensdes, vamos implementar
o algoritmo ja estudado no capitulo anterior. Desse modo, escrevemos os operadores O, o3 €

(9;1,1’065 como uma combinagao linear dos projetores (3.3.1243.3.17)), ou seja:

Opas = a1 PV + a; P 4 a3 PO 4 0, PO 4 a5 PO") 4 48, (3.3.24)
e
Ot g = 01 PY + 5, PO 4 by PO 4, PO) 4 PO 4 s, (3.3.25)
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P(l)m\@ﬁ P(Q)n)\@ﬁ P(Ofa)n)\ﬂﬁ P(Ofw)n/\@ﬁ P(Owa)nA@ﬂ Sn/\@g
PY | PY 0 0 0 0 0
PY 0 PY 0 0 0 P
AN pv,af uv,af
(0-9) (0-9) 1
P/,LI/,H)\ 0 O P;Ll/,aﬁ O ?epﬂwa,@ 0
(0—w) (0—w)
P‘w/’ﬂ)\ 0 0 0 P,uu,aﬁ Ewwé’oﬁ 0
(0—6u) 1 1 (0-8) | p(0-w)
PMV’K)\ 0 0 ngwaﬁ Ewwﬁag PMV@B + PMV,CY,B 0
S/J,I/,H)\ 0 S,uu,aﬁ 0 0 0 _4DP;512/)04,6’

Tabela 3.1: Algebra dos operadores de Barnes-Rivers estendida

Seguindo o mesmo procedimento, vamos obter a forma geral do propagador do graviton em

(2+1) dimensoes. A contracao dos operadores ([3.3.24)) e (3.3.25)) gera a identidade

I = (aPY + asP® + a3 PO + q, PO + a5 PO 4 445) x
(0 PY + b, PP+ by PO 4 b, PO 4 ps PO 4 1S .

Desenvolvendo e usando os dados da tabela (3.1]), encontramos

1 1
1= as (bgp(o_e) + ﬁbg,P(ew)) + alblP(l) + CLQbQP(2) + ay <b4P(O_w) + Eb@P(we))

1
+as [E’*”PW’ t

1
Ly, P09 4 gy (PO p(O—w))]

+ (agbg + agbs) S — 4aghg P,

Agrupando os termos semelhantes e escrevendo a identidade como (2.2.30)), temos:

PO

/W70¢B py,o /"/V7O‘B ;},V,OLB o

1
+ (a4b4 + a5b5) P(Oiw) + — (a3b5 + a5b4) P(Qw)

V2

1
+ —

V2

Ao compararmos os coeficientes, obtemos o seguinte sistema de equacoes

azbs + asbs = 1,
arby =1,

asby — daghgld = 1,
asby + asbs = 1,
azbs + asby = 0,
asbs + asbz = 0,
asbg + aghs = 0.

Isolando bg em (3.3.32)) e substituindo em (3.3.28]), encontramos

a2

by = 2
> 7 62 + 4620
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+ p? st plo=0 4 pl0-w) (asbs + asbs) PO 4 g6, PV (a2by — 4asbsl)) P®

(a4b5 + CL5b3) P(w@) + (a2b6 + Cl@bg) S.

3.3.26
3.3.27
3.3.28
3.3.29
3.3.30
3.3.31
3.3.32

AN TN TN TN TN TS T
e S e N N

(3.3.33)



Substituindo o valor obtido para by em (3.3.32)), resulta

Qg
bg = —————=. 3.3.34
0 a2 + 4a20) ( )
A solucao total do sistema é dada a seguir:

R N S S (3.3.35)

"Ta T d244a20° 0T a2 —agay o

as as Qg

by=——F—""— b=, bg=————5=. 3.3.36
! a2 —asa; a2 —asa; a3 + 4a0) ( )

Portanto, a forma geral do propagador do graviton em (2+1) dimensoes é proporcional & es-
trutura,
1 Say 1

1
—_p p0-9) plo—w) _ . p0—buw)
ax a3 — asay (o s “ )+ a3 + 4a30]

O 1

pv,af8 T (aQP - G'GS)
(3.3.37)
Precisamos agora saber quem scao os coeficientes a; que caracterizam a lagrangiana .
Lembramos que a lagrangiana de Einstein-Hilbert é a mesma em (2+41) dimensdes. Logo,
podemos “aproveitar” o resultado , que representa o operador quadratico associado ao
setor de Einstein-Hilbert. Também temos que adicionar a contribuicao do termo de Chern-

Simons, dado na eq. (3.3.9)). Escrevemos assim:

1 <2P(0 0) 4 p0—w) /5 p(0- 9w> % <2P(07w) I \/ép(ofaw)) ]

Ouvap = 9

—_

—~ % (PO 4 pO=) 4 pO 4 PO +

4L B <2P(0‘“) + \/§P<°—9w>> - % (PY 4 2p0=)
[0

(PY 42PN O

N |

- 411 <2P<0—9> + PO 4 ﬁpm—ew))} O+ 495.
T

Agrupando os termos semelhantes, temos

-1 O 0 O 20 0
Opap = (0‘2& )DP<O—9> — 513(1) - EP(Q) ™ — pO=) \/_ pO=0w) +ES. (3.3.38)

Por meio desse procedimento, encontramos

O O a—1 O V20
M=o T T ® ( % ) U=y BT gy T (3339
0 que permite escrever os coeficientes b; a seguir
2c 272 2
= e i A
4 2 T
by == (1— b —,eb

4 D( @), bs o ¢ 200 — 402
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Podemos entdo escrever explicitamente o propagador do graviton (no espa¢o dos momentos):

/,Ll/,aﬂ - ﬂ”vaﬁ 2 P’l’:aﬂ /LV,QB

27—2 (2) 1
+ T2 _ 4p2 (Pul/,aﬁ - Zs,uu,aﬁ . (3340)

| o B
s = 1005 = = {2an3&5 +4 [(a VR I U MRV >)}
p bl

Além do polo usual (p* = 0), temos um outro que surge da propria estrutura do espago-tempo
de (2+1) dimensoes, que fornece a seguinte relagao de dispersao

7% — 4p* = 0. (3.3.41)

Ao isolar pg no primeiro membro, temos

2 T2
po=E\[Ipl"+ (3.3.42)

que ¢ a relacao de dispersao de um graviton massivo, e consistente com os requisitos de causa-
lidade. De fato,

= — Pl
g 7 )
p|” + 7

é a velocidade de grupo obtida para esse polo.

3.3.3 Unitariedade tree-level

Neste momento vamos analisar a unitariedade das excita¢oes do propagador (3.3.40). Antes de
iniciarmos tal discussao, devemos saber se o projetor S, o3 contribuird ou ndo para a saturacao,
temos

1
TS, ap ]’ = §J"” (Spabus + Susbua + Svabus + Supbua) I,

1 y o
- 5(]# (S,uanuﬂ + Sﬂﬂnl/& + Sl/anuﬁ + SVﬁn#a) J B’

1

= 5 (Suad"s + SusT"a + Suad 5 + Susd"a) T,

= (Sua"s + SppT"a) IV,

= 28,5 J" 5],

note que
Swjuﬁjaﬁ - —Saujaﬁjum

= —Saud ",
= =S5 ],

logo
Spad? 5] =0, (3.3.43)

e assim a saturacao de P, .3 por correntes externas nao devera contribuir,

TS apd? = 0. (3.3.44)
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Importante observar também que os resultados para a saturacao dos outros dois projetores deve
ser corrigido para o presente cenario,

1
JIWP/EIQI?aﬁJaB = Jaﬂ‘]aﬂ 9 <‘]aa)2 ) (3345)
_ 1
J/WP;E?/,aGB)Jaﬁ — 3 (Jaa)Q ) (3.3.46)

Usando o propagador (3.3.40f), temos

SP = J"Res [iO}} 5] J*,

pv,af
2 (72 Japd? — LT 1 )
= —iR — | — 2 —(J%, .
1Res p2<4 pQ—%Z +2( )

O residuo do primeiro termo em p? = 0 serd dado por:
af 1 a \2
Res| g = =2 | JapJ* + 5 (J%)7

a cha 2 cha 2
N 0 S NPV R (2 Y] B
p|” p|

que ao compararmos com o resultado (2.4.17)), implica em uma contribui¢ao de norma negativa.
2 ~ el s 2
Portanto, tal modo é ndo unitario. Para o polo p? — T =0, temos

1
Res|p2_%:0 =2 <Jaﬁjaﬁ -5 (J@a)Q)

2 2
(et ) (a2 3.3.47
2 T 2 2
pl”+ 7 VIl + 7

Este segundo modo, ao contrario do anterior, esta associado com excitacoes de norma positiva
e isso nos permite chegar a conclusao de que o mesmo ¢é unitario. Entretanto, pelo fato de
um dos modos violar a unitariedade, a gravitacao Einstein-Chern-Simons como um todo nao é
unitaria.
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CAPITULO

Gravitacao de Einstein-Hilbert modificada
por termo de violacao da simetria de
Lorentz.

Nos capitulos precedentes, revisitamos o calculo do propagador do graviton em cenérios bem
distintos. Vamos agora examinar a obtencao do propagador do graviton em uma teoria de
campo em que ha violacao da simetria de Lorentz, ou seja, um teoria de campo além do
Modelo Padrao (MP) [22].

O MP é uma teoria que se propoe a descrever tanto as interacoes fundamentais forte, fraca
e eletromagnética, que atuam entre as particulas elementares (férmions e bosons). Apesar de
obter grande sucesso, como a comprovacao da existéncia do Boson de Higgs, nao podemos
nos referir ao MP como uma teoria completa no contexto da fisica de particulas porque ainda
existem algumas questoes em aberto, tais como: onde a gravidade se encaixa no MP? Qual a
origem da massa dos neutrinos? Por que existe assimetria entre matéria e antimatéria? Qual a
origem e esséncia da matéria escura? Essas pergunta ainda nao possuem respostas, sugerindo a
possivel existéncia de teorias para as interacoes fundamentais que vao além do Modelo Padrao.
Entre estas, situa-se 0 Modelo Padrao Estendido (MPE) [23432] como uma possibilidade.

O MPE, por ser uma extensao do MP, contém todas as interacoes por este descritas, in-
cluindo novos termos de interacao em cada um dos seus setores. Esses novos termos que violam
a simetria de Lorentz e CPT (no referencial das particulas), sdo compostos por contragoes ten-
soriais entre os campos fisicos da teoria e campos de fundo (fixos), que carregam a informacao
da violagao da simetria de Lorentz [23133]. A ideia por tras dos mecanismos de violacao de
simetria é justamente a busca de uma teoria mais fundamental, valida em altissimas energias
(na escala de Planck). Se a simetria de Lorentz é violada espontaneamente em altas energias,
gera~se quantidades esperadas no vacuo nao-nulas, que funcionam como efeito remanescente
da quebra. Nao poderiamos deixar de mencionar que uma teoria que viola a simetria CPT,
inevitavelmente ira violar a simetria de Lorentz . Em contrapartida, preservar a simetria
CPT nao nos da garantia alguma de que nao ocorra violacao da simetria de Lorentz fora do
cone de luz, ou seja, pode ser que aconteca, mas sem qualquer conexao causal.

O processo da quebra de simetria pode ocorrer de duas principais formas: espontanea ou
explicita . A principal diferenca entre esses dois processos reside na forma que os termos de
violagao surgem. Na primeira eles se originam por meio do mecanismo de quebra espontanea
(como o mecanismo de Higgs). Na segunda os termos de violacao se acoplam diretamente
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aos campos fisicos na lagrangiana de alguma teoria, ou seja, os campos de fundo fixos sao
introduzidos & mao “forcando” a violacao da simetria de Lorentz. Este trabalho contempla o
caso da violagao espontanea de simetria no setor gravitacional, sendo estudado por meio de
um formalismo que mantenha a invaridncia sob transformacao de coordenadas no referencial
do observador.

Desde que as teorias de campo que violam a simetria de Lorentz foram sugeridas como uma
extensao ao MP vigente, tedricos em varias partes do mundo se interessaram em investigar a
fundo as implicacoes da quebra de simetria nos diferentes setores do MP e compara-los com os
resultados ja conhecidos.

Em 2004 , Kostelecky propds um modelo teérico no qual os termos de violacao de Lorentz
foram introduzidos por meio de tetradas e conexdes de spin dentro da geometria de Riemann-
Cartan provida de torsao e dinamica de curvatura. No ano seguinte, um novo estudo foi
desenvolvido usando o formalismo apresentado no trabalho do ano anterior. Neste artigo, foi
analisado a conexao entre os modos de Nambu-Goldstone e a violacao espontanea de simetria
de Lorentz e difeomorfismo. Este capitulo traz alguns resultados obtidos em , que foi o
precursor de outras investigagoes que abordaram essa questao [43452], os resultados obtidos de
tais investigacoes sugerem interessantes direcionamentos para mais desenvolvimentos teodricos
e testes experimentais. Para exemplificar este fato, podemos citar o trabalho de A. Cavalcante
et. al7 onde foi obtida uma solucao do tipo Schwarszchild para o mesmo modelo de gravidade
abordado nesse capitulo, podendo ser testada por meio da precessao do periélio de planetas,
curvatura da luz e efeitos de atraso temporal.

4.1 Modelo tedrico

A investigacao do setor gravitacional do MPE tem sido amplamente realizada em diversos
trabalhos recentes [41H53]. O foco dessa sec¢ao é o estudo do propagador do graviton no contexto
de um modelo gravitacional que inclui termos de violacao de Lorentz. Neste sentido, vamos
considerar o chamado modelo “bumblebee”, constituido por um campo vetorial no formalismo
da relatividade geral para uma teoria de campo na presenc¢a do termos de violagao da simetria
de Lorentz.

Como descrito anteriormente, sob a acao de um potencial apropriado, o campo bumblebee
B, adquire um valor esperado de vacuo nao nulo b,, o que induz a violagao espontanea da
simetria de Lorentz no setor gravitacional do MPE. A a¢ao total deste modelo consiste na agao
de Einstein-Hilbert somada a acao do termo de violagao de simetria de Lorentz, ou seja,

S:SEH—f—SLv, (411)
onde Lgy ¢ dada na eq. (2.3.11]) e Ly representa as contribuigoes da violacao de Lorentz,
dada a seguir:

2
4 0y %Y
Sy = /d m\/—gﬁ (uR + s R, +t! 6Rw,a5) ) (4.1.2)
Aqui, u representa um escalar, enquanto s** e t***% sio tensores adimensionais que contém os
coeficientes de violacao da simetria de Lorentz, possuindo as mesmas simetrias dos tensores de
Ricci e Riemann. Por fim, x? é a conhecida constante de acoplamento gravitacional. Podemos

salientar também que estes tensores possuem traco-nulo, uma vez que s*, e t*”,, contribuem
na lagrangiana com termos proporcionais a R, pois:

s R, = s", R, = 2s% R’y + s';RI; + s" ,R",. (4.1.3)

com i#j
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Dessa forma, o trago de s*¥ contribui na acao com termo proporcional a R, que pode ser
absorvida no termo uR. O mesmo raciocinio se aplica ao traco do tensor t***. Formalmente,
podemos tomar t***? = 0, e parametrizar as quantidades u e s em termos de um campo
vetorial B*. Escrevemos assim:

1
w=1€B"B,, (4.1.4)
1
s = ¢ (B“B” - Zg“”B“Ba) , (4.1.5)
onde ¢ tem dimensao de massa [§] = —2, 0 que mantém adimensionais u e s*/, conforme [41].

O campo vetorial B* é chamado de campo “bumblebee”. A constante £ é quem estabelece o
acoplamento entre o campo bumblebee e o tensor de curvatura do espaco-tempo. A dinamica
do campo bumblebee descrita por uma acao que congrega os acoplamentos e eo
termo dinamico:

K2

1 2
Sp = /d%\/—g {—ZBWBW - fB“B”RW -V (B,B"F bQ)} : (4.1.6)
onde By, é o tensor antissimétrico que faz o papel de “field-strength” do campo bumblebee,
B, =90,B, —0,B,. (4.1.7)

Na ac¢ao (4.1.6) temos ainda o potencial,

(4.1.8)
causador da quebra espontanea da simetria de difeomorfismo associada a quebra espontinea
deflagrada no setor do campo bumblebee. Aqui, A é adimensional e b é uma constante positiva
relacionada ao valor esperado de vacuo nao-nulo do campo bumblebee.

E importante ainda mencionar que a agao (4.1.1)) deixa de ser invariante sob a transformagao,

Py () = hyw () — 0,8, () — 0,8, (x), (4.1.9)

que se deve a presenca do campo bumblebee neste modelo.

4.1.1 Linearizacao da lagrangiana Ly

A fim de estudar os efeitos da presenca do campo bumblebee sobre o propagador do graviton,
vamos buscar uma forma linearizada e quadratica em h*” da lagrangiana L. Partindo da eq.
[4.1.2] com t#F = 0, resta:

*CLV = O'\/—_gBMBVRM,/, (4110)

sendo o = 2¢£/k% O célculo do propagador, como visto nos capitulos anteriores, requer uma
expansao da lagrangiana em segunda ordem nos campos propagantes. Assim, devemos escrever
(4.1.10) como funcdo de termos em segunda ordem de h*”. Podemos executar essa tarefa
escrevendo as excitacoes dos campos em torno dos valores esperados nao-nulos (b*) através de
pequenas flutuacoes (h* e B*), como dado a seguir:

Y = Ny + Khyy, (4.1.11)
B, =b,+ B, (4.1.12)
B* = b + B* — kb, h". (4.1.13)
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Note que a tnica barreira que nos impede de escrever diretamente a expansao da eq. (4.1.10)
em segunda ordem ¢ o desconhecimento de uma expressao para B* e, para determina-la, vamos
obter as equacoes de movimento a partir da agao

1 174 25 v v
Sp = /d‘*m/—g [—ZBWB“ + 5 B'B"R,, =V (B.B" Fb%) |, (4.1.14)

e resolvé-la para B* com o potencial especifico

A
V=7 (B"B.F1)". (4.1.15)
Usaremos as equagoes de Fuler-Lagrange para o campo bumblebee
0Lp 0Lp
— 9, | =————| =0, 4.1.16
o~ (s8] (110

nos mesmos moldes utilizados para um campo vetorial usual. Para a primeira parcela,

OLp 0 1
= — | ——B.sB* + 0B“B°R,5 — V (B.B* ¥ b* 4.1.17
9B, aBJLL pom o 5=V )| (4.1.17)
encontramos:
= 20 B, R"* — 2\ (BoB* F V) B". (4.1.18)
0B,
A segunda parcela da equacao de Euler-Lagrange resume-se a
OLp 1 0 1
= —————— (BayB"’) = —— (—4B") = B" 4.1.19
8(0,B,)  49(d,B,) (BasB) = = ( ) ’ ( )
logo,
OLp
0, | =————| =0,B". 4.1.20
Bl 120

Substituindo tais resultados na eq. (4.1.16)), obtemos a equagdo de movimento

20B,R"* — 2X\ (B, B* F b*) B* = 9,B"". (4.1.21)

Na equagao acima, podemos aplicar a aproximacao adotada nas eqs. (4.1.11|—4.1.13)) e simpli-
ficar os termos para obter:

(O, — 0,0, — 4Xbub,) B = —2\kb,babsh®™ — 200" R,,,,, (4.1.22)
que no espaco dos momentos pode ser lida como

(=P*Nw + Pupy — 4NbD,) B = —2Xkb,babsh®® — 200° R,

O, B" = J,, (4.1.23)
onde definimos,
O = =P N + puby — 4Nbb,, T, = —2Xkb,babsh™” — 20b% Ry, (4.1.24)
que satisfaz a identidade
O A = 67, (4.1.25)
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onde 0", é o delta de Kronecker. A eq. (4.1.23) pode ser solucionada pelo método de Green.
Para tal, a contraimos com o operador inverso de 6%, que satisfaz (4.1.25)). Realizando a
contracao da eq. (4.1.23) com o operador A%, temos :

A0, B" = A ], (4.1.26)
B = A", (4.1.27)

A fim de determinar A®, vamos usar o método de projetores tensoriais, expandindo-o na base
de projetores [1as, PaDp; babs, (Pabs + Ppba)], ou seja,

Aaﬂ = A17ap + a2PaPgp + a3bab6 + a4(pab6 + pﬁba)a (4128)

onde ay, as, az e ayq sao coeficientes a serem determinados. Implementando (4.1.28)) na eq.
(4.1.25)), temos:

(—PQ%a + PuPa — 4)\b,ubo¢) [aléazx + azpap,, + agbaby + a4(pab,, + pyba)] = Nuv- (4129)
Desenvolvendo os produtos e realizando as simplificacoes devidas, resulta:
- p2 [al'r]/_w + @2PupPy + a3bp,bu + a4<p,ubl/ + pubp,)]

+ {a1pupy + a2p’pupy + as (b p) puby + as [(p°puby + (b p) pups] }
— 4X {arbub, + as (b p) puby + asb®byb, + as [((b- p) by, + b°pybu)] b = 1.

Agrupamos os termos semelhantes, obtemos o seguinte sistema:

—CL1P2 =1,
a1 — asp” + agp® + ayg (b-p) =0,
—asp® — 4ha; — 4 \b%as — 4\ (b-p)ay = 0,
—pay +as (b-p) + piay =0,
—p*ay — 4\ (b p) ag — 4\b*ay = 0, (4.1.30)

cuja solucao conduz aos coeficientes a; a seguir:

1 aq 1

a1 =——, Q4= — = ) 4.1.31
o ) POep) (131

2 1 4Nb? 2 4 4Nb?
G5 =0, ap— L) AN (4.1.32)

A (b p) ANp? (b p)

Assim, o operador A,g tem a forma,
Ang = ! —Mpp + ————(pabs + psba) (4.1.33)
T e T R ) T -

Podemos entao encontrar a seguinte expressao para B* :

- 1 (p? + 4\b?) 1
Bt = | == — S i —————(pMBY + pPb) | (—2Xkb,babsh®? — 20b%R,,) -
2 or o2 Yt Ee P Y ( g )

(4.1.34)
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Desenvolvendo os produtos e simplificando os termos, resulta:

~ KpPbabgh®®  20b R 20p"babs RP op'R ob*R  ob*p"R
B = il - o —~ +
2(b-p) P’ p*(b-p)  AX(b-p)  p* pP(bep)

Agora vamos retomar a eq. (4.1.10]), escrevendo-a como uma expansao em segunda ordem
no campo h,

(4.1.35)

1
Ly = ov/—gB,B,R" = (1 + ?m) B,B,R". (4.1.36)

Note que nao levamos em consideracdo os termos de segunda ordem na expansao de /—g.
Uma vez que o tensor de Ricci fornece contribuicoes em primeira ordem de A*” ou superior, o0s
termos em segunda ordem de /—g¢g implicariam em contribui¢oes de pelo menos terceira ordem
em h*”. Sendo assim, consideraremos a expansao até a segunda ordem do tensor de Ricci,

Loy =0 (1 + %mh) <bu n B’H) (by + By) [R* (h) + R™ (h*)]

Liy=0 [R“” (h) + R™ (h?) + %me (h)} (bubl, + 0,8, + b, B, + B#BV) +0 (h?).
(4.1.37)

Simplificando essa expressao, resulta:
~ 1
Liv=0 {bubyRW (R*) + 2b,B,R" (h) + 5hbby R (h)} +0 (h?). (4.1.38)

Para finalizar o processo, basta substituir as expressdes ja obtidas para B,, R* (h) e R* (h?),

Ry = Ry (h) + Ry (h?) + O (B?)
R/},l/ = —21‘438[“ g'yrﬂy + 2’f2gﬁy[u ga alk + O <h3) ) (4139)

obtidas no apéndice B] A contribui¢ao de primeira ordem em h*” do tensor de Ricci, escrita no
espaco dos momentos é:

K
RMV (h> = 5 (p2h,uu + p,upzzh - p,upvh'w - pup'yh’ﬂt) : (4140)

Para a segunda ordem, temos

I<L2

RMV (h2) = [(pﬂhﬁa +pahﬁﬂ o pﬁhaﬂ) (pl/hmx + plﬂhua - pahm/)

T4
- p,uhpnhnu + pl/hpnhnu + th‘h‘}U/ + 2pupozhanhﬁu
_2pupahanhnu - 2pnpahmhw] . (4141)

A forma linearizada da lagrangiana £y pode ser obtida ao substituir as eqs. (4.1.40—4.1.41])
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na eq. (4.1.38]), resultando em:
1
£L‘/' = é— {p2bub1j (h:U'Vh + huahya> — 5 (b . p)2 (hﬁ“jh'uy _ h2)

1
— (bupy + bupy) (baps + bﬂpa>:| } R OB

- |:bubypapﬁ + 4

2\
V2 pupuPals
p2

(b ) p) Pubv PuPuvPaPp B 2 2 2 p4 2
- () + 4 === MR + —(b- +—1h
2 ( apﬁ bﬁpa) A\ b P ( p) 4N

4£2 20 1,
+ % { [—21925#1% — 26%p,py + 2 (b p) (bupy + byp,) — AL ] hh

1
+ {%Mbupapﬁ v (bupy + bupy) (bapp + bppa) +

b-p)p.p,
p2buby — (b p) (bupy + bpy) + ﬂ] thVA} . (4.1.42)

p2

Se formos comparar a eq. com a da ref. [22], iremos notar que o ltimo termo da
terceira linha estd diferente, isso se justifica pelo fato de haver um pequeno “misprint” nesse
artigo. A fim de obter a forma bilinear da lagrangiana (4.1.42]), vamos usar a métrica para
escrever convenientemente alguns termos,

1
/CLV = Shlﬂ/ {p2 (bubunab’ + bubﬁnau) - 5 (b ' p)2 (nuanuﬁ - nuunaﬁ)

1
- {bubupapﬂ + = (bupu + bz/pu) (bapﬁ + bﬁpa)] } he?

4
4% P*PuPuNa
+ {_2p2b,ubz/77a,8 — 20°pupunap + 2 (b p) (bupy + bupp) Nap — “Q—AB
o b L, ; ; ; Vpupupaps (b p) pupy ; ; DuPvPaDs
+ I upapﬁ_z ( Py + zzp,u) ( aPs + Bpa>+ 2 - ( aPpB + Bpa)+—

p? 4\
(b-p)° p,upanz/B] b
- .

p
4

P
+ (bzﬁ —(b-p)°+ 4A> NuwNas + P*bubanus — (b D) (buPa + bapy) Mus +

(4.1.43)
A seguir faremos a simetrizagao dessa lagrangiana, no intuito de encontrar os operadores que

surgem da contrbuicao dos termos de violagao de simetria de Lorentz.

4.1.2 Simetrizagao da lagrangiana Ly

A extensao da lagrangiana obtida anuncia a dificuldade do proximo passo, que é a sua simetri-
zagao. Os termos a serem simetrizados sao:

1 1 (wA
bubvag = 5 (Bubutap + babgm) = 5 (\f oo+ a;’) (4.1.44)
1 1= | mwha
bubstian = 7 (leabubs = Mabube + Musbaby + Tuabsby) = 1 (2HW RS o ) L (4.1.45)
1 2 wA—b
b,ubupapﬁ = § (b#bllpapﬁ + babﬁpﬂplf> = EH,I(J,V af )7
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(b,upu + bupu) (bap,é’ + bﬂpa) = bubupap,é’ + bubapupﬁ + bubb’pupa + bubapupb’ + bubﬁpupon

T(wA—a
—= p2HEJ,l/,aB )

Este ultimo nao foi exatamente simetrizado, mas apenas reescrito. Continuando,

- 1 /- ~ 1 ~ (6% ~ (WS
(bupy + 0uDp) Thap = Bytlap = 5 (Zwﬁaﬁ + EWM) =3 <\/§H/(w,o)ﬂ + HSZ,J&) :
2 S P’ = = P’ ~(wX)
Pupy (baps + bgpa) = PwwBas = <°"W2a/3 + Waﬁzl“’> = S s

1 1 ~r(2 rr(wA—a
bubatgy = 7 (Nawbubs + Npububa + Nusbaby + Nuabsby) = 3 (Qwa),aﬂ + 1l )> ’

1 ~ ~ ~ ~
(bupa + bozpu) T = Euanuﬁ = Z (nauzub’ + 77,81/2;104 + nuﬂzau + nuazﬁu) .

Neste momento, cumpre observar que:

21’1[(0,)2) = 2wuuia,8 + QWaBilw - QWMV (bocpﬁ + bﬁpa) + 2("}065 (bMpV + bl’pﬂ) :

uv,af
Permutando os indices de w e X convenientemente em todas as parcelas, obtemos:

21:[,5;]’7225 = ww,f]w + wﬂyiw + wu@iw + wwigl,.

Assim,
L =@ = (WE)
(bupa + bapu) Nvg = 9 <Huu,aﬁ + HMV@ﬂ) )

Onde definimos os projetores que surgem na simetrizacao da lagrangiana Ly,

~(1) euniu)\ + eukiw{ + euniu)\ + eu)\i,un

H,uz/,n)\ = 2

1’—“[(2) L= O;MAV)\ + G/LAAUK + QVKA/L)\ + eV)\A/Ui
UV,K ) )

= (6%) 1 = =

HUV,H)\ = ﬁ (9#1’2'0\ + 0"@)\2#1’) )

) 1
H(GA) == (euuAn/\ + HKAAHV) )

LUV RN T \/g

r(wA—a)

H;u/,n)\ = w,uHAVA + wu)\Alm + WVHA/J)\ + WVAA;M;
S (wA—b) _

Hlu,y“:{/)\ - w,uVAH)\ + wm/\Auua

= (ws) ~ ~
H#Vﬁ)\ - w,uuzn)\ + Wm\zmn
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onde EW = bupy +bup, e Ay, = b,b,. Reescrevemos a lagrangiana (4.1.42)) no seguinte formato:

1 1 ~
_ v}, 2 (0A) (wA—b) (2) (wA—a)
L vV = gh“ {p [5 (H;W af + Huy,a/j > 4 <2Huu af + H/w,aﬁ >:|

1 (0-6) 1) (0—w (0-6)  plo-w) (0—6w)
_§<b ) [Puua6+PuVa Puua P,uuozﬂ (SP,uuozﬁ pr,af +\/_Puaﬁ >i|
1H(wA b 1H(wAfa) BB 4 gh,ﬂ, _p? (VBN 4 Ay
9 mvaf 4 TabB 2 pv,o8 wv,af

(0—w) (0—6w) 3) (0—w) (0—6w)
b2 ? <2Puyo¢ﬁ +\/_Pwa,8 > ( )(\/_HMVQB+H ) 4)\ <2P +\/_Puoz,3 >

v, pv,af

QH(wA b) 1 QH(wA a) —|—b2 2P(0 w)

1 ~r(w3) (0—w
nv,a3 4 uv,af pv,a3 _§(b'p)Huu,aﬁ+ 4)\P/u/oc,3
4 2
2 9 2 p (0—0) (0—w) (0—6w) p ~(2) r(wA—a)
+ (b - (b ' p) 4)\) <3P v,af + P;w afs + \/_Pw af > + Z (ZHMV,QB + H,u,u,aﬁ )

(1) (@) 2 (1 of
_5 (bp) (Hpuaﬁ+]:[uuaﬁ> +(bp) <§Puyaﬁ+Puua,3>:| h (4160)
Vamos juntar os termos semelhantes e simplificar para obter o resultado:
1 . 4¢2
tay = gt { |-c 0o+ 55 0 pf] P~ pP P2,
2 4
2 5 2 9 P (0—0)
# 20 pr 4 2 (- 0002+ 1) | P

V3¢ (b-p)? — 8\,/}2 (b-p)?

(0-0w) _ 487 = (1) 4% 5\ a2
Ppy,aﬁ - ? (b ’ p) I uv,a8 + gp + ?p Hw/,aﬁ

+—8\§52( p) I, + (f &’ fg )H”A) }h"‘ﬂ. (4.1.61)

pv,af

Aqui faremos um comentario importante: note que os elementos que compoem a base que

“quadra” a lagrangiana L,  é composta pelos projetores [Pﬁ)a g5 Pﬁ?a 55 PIES a@ﬂ), P,E(u) a&ﬁw)) H/(w) B’
o®  qe® 7en

v Wi ap € W’aﬂ] . No entanto, a fim de compor uma élgebra fechada que permita calcular

o propagador do graviton de Einstein-Hilbert modificado por termos de violagao de Lorentz, é
necessario acrescentar mais projetores, de modo que o conjunto total de operadores é exibido
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a seguir :

- o Q;MSV)\ + e,u)\iuﬁ + euniu)\ + HUAS;M

M) = 5 (4.1.62)
ﬁfu)m _ OunAor + 0Nk —;— OuNux + HZ,AAM (4.1.63)
I = ﬁ (G Zr + 0T ) (1.1.64)
o, = L (O Nix + 0urA ) (4.1.65)
V3

s = A, (4.1.66)
%Y = W + WA + Wy + Woals, (4.1.67)
" = Wb + werl, (4.1.68)
) = w0 Sen + WeaSys (4.1.69)
T = AuwSe + AaS. (4.1.70)
Em outras palavras, ao efetuarmos a contracao entre os projetores Pﬁ?aﬁ, Pﬁ?aﬁ, Pﬁjﬁ),

Pﬁ;%w), ﬁ;(}v),aﬁ’ ﬁﬁaW ﬁl(fyzgéﬂ e ﬁLiAo)éﬁ} vao surgindo termos que nao se identificam com
nenhum destes, o procedimento de fechamento é similar ao realizado para o caso da gravitacao
de Chern-Simons, e o conjunto de operadores que deve ser introduzido esta representado eqs.
(4.1.62)-(4.1.70)).

A lagrangiana total, composta pelas contribui¢oes de Einstein-Hilbert (sem o termo de

gauge-fixing) e violagao de Lorentz é dada por:
L=Lgyg+Lyry. (4.1.71)

Lembrando que Lgy também pode ser escrita como,

1
Lpy = Eh“l’ (—T],wnaﬁPQ + 20, Pals + Npallpd” — 2771,@]?5]?#) he?, (4.1.72)
obtemos para a eq. (4.1.71)) o seguinte resultado:
1
E = _§huyouy,aﬂhaﬂ7 (4173)
onde
OHV@ﬁ = alP/Ei?ocB + a2p(ua6 + 3P uaﬁ + a4P/LS au[))’) + 5P gaeﬂw
+aglll)) g+ arll®) o+ asTT0) 4+ aglOY 0 (4.1.74)
e os coeficientes a; sao dados por:
4£2
=0 p) =5 (0p), =y +E0p) (4.1.75)
2452 p4
= —¢(b-p)° - bp* — (b — 2p? 4.1.76
a3 =—E(b-p)" — — < (b-p)* + o) ( )
8v/3¢* 4¢2
4 = ,_; (b-p)* =V3(b-p)*, as= % (0-p), (4.1.77)
4£2 8\/3 2 8\/§ 2
= —&p? - ip , ar=-— K;f (b-p), as= Kf p? — V3%, (4.1.78)

resultado inteiramente de acordo com [22].
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4.2 Calculo do propagador do graviton com violacao da
simetria de Lorentz

O propagador do graviton no cenario com violacao da simetria de Lorentz tem como estrutura
o operador (’)W o0 que satisfaz a relagao

KA -1
O,uu,mk (O ,aﬂ) = Luv,afB (421)
onde Z,,, o ¢ 0 operador identidade dado na eq. (2.2.30). A forma mais geral proposta para
o operador OW op € uma combinagao linear de todos os projetores da base de Barnes-Rivers
estendida,

O s =0 PY s+ 0.P? 4 by PO b, PO 4 PO )
+ 06T, g + boTT) o+ BT S+ b Hﬁ%ﬁ

+ blUHw/,aﬁ + bl H(wA a) + bl H(wA b) + bl

pv,af pv,af ul/ «@

2+ bl (4.2.2)

pv,of3

O desafio maior nesse processo é obter corretamente as contracoes que envolvem todos os

operadores da base estendida. Um outro detalhe que precisa ser mencionado é o seguinte:

vimos que as contracdes que envolvem P79 plO=«) o plO=0w) ©ando ndo nulas sio nao
q Q q /_Lyaﬁ7 luyaﬁ? ‘uyyaﬁ ) q

comutativas, ou seja,

0—0w (0-9) W)k
P;EV KA )P Oé 7& ‘P;U/ I{)\ 0 o) A,aﬂv (423)
0— QUJ UJH 0 w LU:"C
P,LEV KA )P(O ,afB ?é Py,u /{)\)P (0-6) ,af. (424)

Dentro da base de Barnes-Rivers essas sao as unicas contracoes entre diferentes projetores que
possuem resultado diferente de zero (vide tabela . Esse fato chama atencao para a impor-
tancia de observar a maneira como os indices dos operadores sao contraidos. E importantissimo
frisar esse detalhe porque um estudante desatento pode pensar que basta calcular uma contra-
cao que a outra terd o mesmo resultado, o que além de nao ser verdade, acarreta em um erro
grave. O sistema montado com os resultados incorretos das contragoes seria trivial, caso exista
uma solugao nao-trivial (possibilidade baixissima devido & complexidade do sistema obtido),
estaria igualmente incorreta.

Uma outra informacao relevante é que nao é necessério calcular duas vezes a contracao entre
dois projetores distintos, mas apenas trocar os indices dos termos nao-simetrizados é suficiente
para a obtencao do resultado. Vamos exemplificar isso na primeira contracao, o restante foi
obtido apenas pela troca dos indices. Iniciamos pelas contragao com plo-o .

K, aﬁ
1 . - . -
i), P, = 1 (9,mzzyA 0SS+ O S + ewz@ X 59@\9&5’
1 . . . .
- (eA#zM ERLE SHRN ) S eﬁyz,m) Ous. (4.2.5)
Notando que, )
B8 = (bupa + bap,) 05 = bgp, — (b p) wp, (4.2.6)
decorre:
g o 1
0 PO a5 = 2 2(0upy = (0 D)) +2 (Bups — (0 ) )] s,
- o 1
HE}I/),K)\P(O ?) /\706/3 - 3 [eaﬁbupv + 0apbup — (b-p) (wul/eaﬁ + wuueaﬁ)] )
- iy 1. 92
Iy PO 05 = 28 = 5 (b 1) Wyubos. (4.2.7)
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Invertendo a ordem, temos

o) 1 1/, - - - -

PO = S0ubir X 5 (9%2% ERE AR S ekgz”a) : (4.2.8)
1 ) . 1 - 2

= b (070525 + 0555 ) = e =5 (0D buwas. (429)

Observe que o resultado poderia ser obtido a partir da eq. através da troca
dos indices de 6 e X. A razao disto é bem simples: ao inverter-se a ordem nao mudam-se os
projetores, mas apenas os indices contraidos e os pares de indices livres. Por razoes estéticas,
o restante do céalculo das contragoes, bem como todos os outros calculos mais extensos que
envolvem o propagador, estdo presentes nos apéndices [E] e [F] Abaixo estao listadas apenas as
contragoes (nao-nulas) dos operadores de Barnes-Rivers com os novos projetores de spin que
carregam o campo bumblebee:

1 2

ﬁf}u),mp OO 5 = giuﬁaﬁ —3 (b p) Wwbag, (4.2.10)
PO I = %%iag —~ g (b D) O Was, (4.2.11)
ﬁfﬁm plO-0m ; A Bop — %iweaﬁ, (4.2.12)

Plig;i)ﬁ(z)m’a 5= ;eﬂyAaﬁ — %ewiaﬁ, (4.2.13)

M PO g = %iuveaﬁv (4.2.14)

Pl ST = %%iam (4.2.15)

I L PO = %Pﬁjg + %Aweaﬂ, (4.2.16)
gy = POl o g (4.2.17)
ﬁ;ﬁ%pm—e)mw _ WAW@M’ (4.2.18)
P,Sg,;i)ﬁ(AA)m,aﬁ _ W%}Aaﬁ, (4.2.19)
ﬁ,(fj,ﬁ;\b)P(O_e)mﬂﬁ _ W%'ﬁaﬁ’ (4.2.20)
Plsg,_ni)ﬁ(w_b)m,aﬁ _ W@MMW’ (4.2.21)
ﬁ,&ﬁi)xp(me)m,aﬁ _ Wiweaﬁa (4.2.22)
P}Eg;i)ﬁ(m)m,aﬁ _ W@Wiaﬂ’ (4.2.23)
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10 P s = (0 p) P T,
~ 1\ b
P/EBK)\H(U )\7013 = (b ’ p) P;Ellx?a,@—i_nl(ju,oe%’
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p

AN 2
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A b = 200-p)° 0w
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P( ) H( A=b) >\7 8 = Z]/W('do‘ﬁ - p2 Plsu,aﬁ)’

~(wX K N —w
H;(UJ,H))\P(I) Avaﬁ = Wuyzaﬁ —2 (b ’ p) P;Eg,oeﬁ)?

P(l) ﬁ(wZ})nAﬂﬁ _ Eyywaﬁ —9 (b . p) P(O—W)

UV R w0
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0L PO 5 = AwSag — 2 (0 p) Awwas + (b-p) A — 2(0-p)¢ - ) S Was,

2
- P & T (wA—a 2(b- p -
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/‘“’7‘118 ©

p ~ (2 (b-p) 1—a 2 (b-p)~
P(Q) A,aﬂ = HI(W)@/B — THLMQE — gAuyealg + 3—])22m/9a67
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2 2 9 2
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2 2 9 2
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W P of = W hag 2 Wy S P2 Pivap 3p2
2 2 9 2
(2) FrwA-brA  _ (b-p)e (0-p)” 0w b —(b-p)
PMV,HAH( g )\’aﬁ - AIWWO‘/B o p2 Ew/wa,@ + p2 P;w,aﬁ - 3]?2
2 2,2
= (AY) K S = (wA—a) (b-p) b*p® — (b p)
AP 05 = Bputhag = (b ) TG + P By — 2 2
2 2 9 2
2 2 K S T (wA—a (bp) S bp _<bp)
P;E,V?I{)\H(AZ) )\704/3 = AMVZaﬂ - (b ’ p) wa,aﬁ ) + p2 wuuzaﬁ - T 5 5
ﬁ(@Z) P(O—w)l'{)\ o 2 b 9
TN af = % ( : p) urWag,
e (g 2
PSR = 7 (b p) wubag,
2
=(08) po—wwr _ (0 D)
H,ul/,n)\P af — \/gpz ew/wocﬁa
2
(0-w) (0NN _ (b-p)
P,ul/,n)\ H( ) af — \/§p2 WMVH(XB7
. b-n)>
H/(L/:}@))\P(O_w)nA,aﬁ _ ( 5) A,ul/waﬂ»
p
) b-p)°
rr(wA—a —w)k 2<bp)~
HELV,H)\ )P(O ) )\,aﬁ - p2 E/“’waﬁv
0—w) r7(wA—a)k 2<bp) S
P,LEI/,H)\)H( A-a) )\,015 = p2 wuuzaﬁ7
7 (wA— b- 2 —w
HLViAb)P(O_wW’ _ (b-p) pl )+AW%B7

o 2 MV,O[,B
p

w)

0—
v,a3 + leAaﬂ )

2
PO JwA-brx (b-p) p!
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(4.2.45)

(4.2.46)

(4.2.47)

(4.2.48)

(4.2.49)

(4.2.50)

(4.2.51)
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(4.2.60)
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[ PO g = 2(b- p) Pl + Syutas,

UV, KA uv,af

P(O w)H(wE)HA -9 (b . p) P(O—w) + w#yiaﬁ,

LKA uv,of
Hg}/i),\P(O @A ap = 2(b-p) Apwas + Miuuwaﬁ>
Pt T 5 = 2.(b - p) w s + (19]-3_5?%2&6’
1 POt iiyl/waﬂ 2 (b p) PO,
VK ) \/g \/g uv,af
PIAITO 05 = S = <= (6-0) PLY.
12, PO } s = Bt
e
T PO g =2 (b p) Py ) + Satag,
PO 05 = 2.(b-p) PO + wiSas,

bop)? B2p2 — (b - p)>
H(OA) po-t (b-p) plo=9 p—(p)ewwangAwwaﬁ,

KUK P2 pv,af 3p2
w b- b2 2 b 2
Poa O 5 = ( 5) PL(W - pg—(gp)wuv@aﬁ + W Aag,
p P
- _ b-p)’ b*p* — (b-p)
H(AA) P(O Gw)n)\a ( A l/ea + i S A A} Wads
AN af — \/gp 12 B \/gpz 12 B
b-p)’ b*p* — (b-p)’
PlO—bw) FT(AN)RA g = ( 0.\, Aos,
UV,KA aB \/gpz H B \/§p2 I B
(wA—a) p(0—Ow)kA  __ 2(b-p)¢
Wwr A Zyap
(0—0w) FT(wA—a)kA _ 2 (b ’ p) S
P;w KA II af — \/§p2 9/“/201,3’
2,2 2
(wA=b) p(0—0Ow)rA _ (b p) b'p” — (bp) (0—w) L
HP‘V KA P af — \/_ 9 NVG \/gpz Py,y,aﬁ + \/gAul/eoz,B)
2,2 2
(0—0w) T (wA—b) KA (b p) b*p* — (b'p) (0—w) L
PHV KA I aB = \/_ 9 ,UV Wap + \/§p2 P,uu,aﬁ + \/gelﬂf‘/\aﬁ’
(W) p(0—fw)kA i 1 -
H;w,n)\P af = 3 (b p) w,ulleaﬁ + \/gz,uyeaﬁy
(0—0) 7 (wE) rA 2 1 S
P;w ) I o — _3 (b p) euuwaﬁ + emxzaﬁv

V3
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(4.2.65)

(4.2.66)

(4.2.67)

(4.2.68)

(4.2.69)
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(4.2.71)
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(4.2.74)
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- _ 2 b-p)?- v2p? — (b-p)° -
A=) p(0-6w) “*,QB:—(b-p)AweaBJr—( ) Y bap + p=(b-p) Y Wap,  (4.2.84)

HIARA V3 \/§p2 \/§p2
o) 2 b-p)?’, &  WP=(0-p’ <
plo-o )H(AE)MQ =—(b-p)0,,ANs+ 0,08 + —————"Wu2a 4.2.85
AN o8 \/§ ( p) M B \/3]?2 e B \/§p2 e B> ( )

- K 1 r(wA—a r1(w —w
H(l) H(l)/\:_p2H(A )—(b-p)H( ) +2(b-p)2p(0 )

v, kAT a8 ) uv,a8 pv,af uv,af
+ ) s+ (0-p) I s+ VPP P 5 (4.2.86)
~ ~ 9\ ~ _ ~
L) TG = (0 p) L) 5+ DPTIL 0+ S A
1 r(wA—a) (b ' p)2 N
—5 (O-p) U, 0s —2(b-p)wuwhas + Twwﬁlw, (4.2.87)

12 A0 = (b p) 12

pU,RAT T a8 v,a3 + bQH(l_a) + A,Lwiaﬁ

uv,af

1 r1(wA—a b : 2 ad
—5(0-p) A —2(b- p) Ajwwas + %zwwaﬁ, (4.2.88)

. . | P 2 2 2 ~
W O 2t 2 02 Bus -~ 2 A B0 — —= (b D) WS, (4.2.89
LURAT T a8 \/gp ur,af3 \/g ( p) © B \/gp (2] B \/g ( p) 2] B ( )

= (05) = (1)RA 9 (wh—a) 2 2 2 2 =
0% [0 = = p2p@do = (b 0020 s+ —=p20 g — —= (b D) Stwags (4.2.90
R Y L \/g( P)” Ouwas /37 Ouhas \/3( P) Xpuwass ( )

1) - bp* — (b-p)’ - 2
H(l) H(GA)HA — Y005+ —=(b-p)AL0,
pU, kAT a8 \/§p2 u B \/g( p) o B
2 1 - 2
— (b p)Pwbos + —=2 0 Aos — — (b-p)wwhas, (4.2.91
\/3( p) wap \/§ W 8 \/§( p) w B ( )
- ) = vp*—(b-p)°, - 2
@M s = Z 2 g S s+ ——= (b p) O
uUv, kAT a8 \/§p2 Y B \/g( p) o B
2 1 ~ 2
— = (b PO wes + —Ny S0y — — (b - A was, (4.2.92
\/§( p) W &4 \/3 i B \/§< p) 1 8 ( )
~ (1) 7 (AA)KA b2p2—(b-p)2~ ~ (AA
) IO = — Slag +2 (0 p) TIN5 —2(b- p) 02w Aag, (4.2.93)
. e 202 — (b- )2 . N
oM IO = it A e 7 p§ ) A Sag +2 (b p) TG = 2(b- p) PAwas, (4.2.94)
2
(1) rwA—a)sA < 2 (b ) p) -
M) IS = 28,505 — > W Las) (4.2.95)
~(wA—a) (1) kA d 2(bp)2~
HL A ’Hfa}a = 25, Aop — — ¥ e (4.2.96)
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~ r(wA—b)KA _ b2p2 B (b ) p)2 S

1 0—w
H,El,l/)ﬂi)\H,ocﬁ p2 E,uljw&ﬁ + 2 (b . p) A#yWaﬁ -2 (b . p) b2P}EI/,aﬁ)7 (4297)
Ay~ vp? — (b- )2 . ~
wA—=b 1)k D p 0—w
P = Sy 26 1) ey~ 2(0-9) PPOE. (4.2.98)
) ZI9D™ = 2p°A w0 — 2 (0-p)* PO, (4.2.99)
I O = 2p%w,, Aag — 2(b- p)° P02, (4.2.100)
ﬁftllj),ﬁ)\ﬁ,(cjx\ﬂE)NA = 21921:151\,?2;9 —2(b- P)2 W Nap
T(wA—a ~. ~
+ 0202 = (0 p)* ] T 4 2(b p) AwSag — 2(0- ) PwnSag, (4.2.101)
ﬁ,(ﬁ/i),\ﬁ,(i}sm = 2]721:[;[:\04)5 —2(b- p)2 Awags
r(wA—a ~ ~
+ 0202 = (0 p)* ] TS 4 2(b- p) Duhag — 2(0- ) VP Swas, (4.2.102)

b-p) sy 0D ~waa)
Huv,aﬁ—i_ 2])2 H;w,ozﬁ )

2 O =20 o+ 2mih — (4.2.103)

MY, EAT T a8 uv,af p2

e e = % (b p) Apwbas — %iweaﬂ + %Awiaﬁ ~ % (b-p) A0 (4.2.104)
Moy = % (b P) Ouhas %Gwiw + %SWAQB - % (b-p) A0 (4.2.105)
) (IT0E"™ = %bz/\uuea,@ - %iweaﬁ + %HLMQB - (\%5 2) Suhas,  (4.2.106)
LI = 2oy - BT 0,50+ 00N - Ol 8, 20
TR Rl T | G 'pp2> o o, (4.2.108)
I (42.109)

e T 211

A = s, - O, a2

) (I8 = 2620 wap — (b%bziwww, (4.2.112)

A DT — 2p2,, 0, — (b'p—?bzwwiaﬂ, (4.2.113)
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(b-p)° <

2 (W) kA
HLV),MH,(QB) =2(b-p) Nwas — 2 Y Was, (4.2.114)
= (%) (A (b-p)° ¢
H,uu,n)\H,aﬁ =2 (b ' p) w,ul/AocB - Tw;wgaﬁ, (42115)
=(2) FAD)RA —any (0-p)s - - (oAa)
Lol =2(b-p) 11 Shas + 2620, 505 — (b p) GILCA Y (4.2.116)

pv,of P2

2

. . N b- . N Aa
A2 @R — 9 (. p) TTAY (b-p) A Sap + 20, Mg — (b-p) BPITEA 0 (4.2.117)

pr KA e T wraf P2 v, 0
LT = 2552 + - p)7) P + PP (12,118
I 100 =2 (b p) P09 + Wﬁuyeaﬁ + B has, (4.2.119)
L5 = 2(b-p) RS + WMB + Ao Sas, (4.2.120)
ﬁ/(ffszﬁ,(;\ﬁA)m = % (b ’ p) b29uVAa6 + W\;—#ﬁi'wiw/\aﬂa (4-2-121)
AN IO = % (b - p) b* A bap + W\}#(;'WAWEM, (4.2.122)
0%, filea-om _ 2 [bZPQ\/J%;S )] O Sas, (4.2.123)
I I = = [pri/g;S )] Sy bas, (4.2.124)
I, WG~ = % (b p) b*Opwap + % (b p) Ouvhas + Wiwwaﬂa (4.2.125)
] o | S % (b p) BPwubas + % (b-p) Aybos + W%yiaﬁ, (4.2.126)
ﬁfﬂxﬁfﬁm = % [b*p* + (b- p)2] 6, Wap + % (b D) 0, 0s, (4.2.127)
A O = % [0°0% + (b~ p)*] Wb + % (b p) E0as, (4.2.128)

- ~(AYX)k 2
H,(ffgxﬂ,(a? A= 2 (022 + (0 )] g

Sl

2 - Tr(wA—a
5 (b p) 00,0 Sas + —= [0p* — (b-p)] LAY (4.2.129)

S
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N ~ 95k 2
) O = = 11202 4 (b p)?] Apas

U, AT a8 \/g
+ 2 (b p) b2S, 005 + L [0%p% — (b-p)°] TI@A 9 (4.2.130)
\/g uvVap \/g uv,afl
2 2
(08) O _ pap0-0) , UPP° — (b P)" = on) (AA)
HMM)\H =b P/waﬂ + \/§p2 Hwaﬁ + HWQB, (4.2.131)
= (0A) T(AA)KA I A *p® — (b- P)2 r(AA)
H;w,n)\H,aﬁ = ﬁb 9;11/ af + \/g—pQ Hlﬂﬁaﬁ’ (42132)
1 0p? — (b p)°
(AA) 77 (OA)RA 4 p p (AA)
H/'“/ H}\H — %b Auyeaﬂ Tﬁﬂuy Oéﬁ’ (4.2.133)
oA wA—a)k\ (b p) b
HI(JV ,‘z/\H( ) == Tpeuyza[g, (42134)
- 2(b- 1) b2 ~
Hf;)//}{)\a)n(@/\) — (\/_Tmzzwﬂaﬁ, (42135)
/4
2
(OA) (wA a1 (b-p)? b’p* — (b p)
I H = — b was + ——0,, Nog + ——=—"A\, wags, 4.2.136
UV RA \/g 2 B \/— 2 \/§p2 12 B ( )
2
(D) 01 ALy (b-p)° v*p* — (b-p)
H/uz Y H = \/gb wwjeag —+ \/_ 2 A,uueaﬁ —\/§p2 wijaﬁ, (42137)
1Y ) »A —(b ) b20,wap + (-p) 0,5 (4.2.138)
pv, kAT a8 - \/— p urWap \/— 5 v afs L.
D) foam _ 2 (b - p) Pwubap + (b-p)° %0 (4.2.139)
PVRAT T a8 - \/g b uvVaf \/— 5 afs L.
2
=(0A) F(AD) kA _ 2 > Loy, o« Vr=(0p° =<
II II b-p)b°0,, Ao+ —=b"0,Y08+——N, Y03, 4.2.140
pU,RAT T a8 \/g ( p) 12 B \/§ 12 B \/§p2 2 B ( )
2
S (AT) H(OA) A 2 9 1 ¢ v’p? —(b-p) ¢
II II =—(b-p)b*A 0,5+ —=b2,0, +—-3,MA.5 4.2.141
pU,RAT T a8 \/g( p) 12 B \/g H B \/§p2 12 B ( )

Apos calcularmos todos os produtos de contragéo tensorial entre os projetores da base estendida,
é preciso substitui-los na expressao e coletar os termos semelhantes, formando um sistema
de equacoes (veja o apéndice [F)), por meio de comparagao com os projetores que constituem o
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operador identidade dado na eq. (2.2.30). A solugao do sistema obtido fornece:

. W y 1 1
1_/{252([)-]))2‘355,, 2_537 3 — QBE"
N4 N5
by = I ;b=
20k2€%2 (b-p)" [2 B 26 (b-p)" L H
b R S b _ oo Ns
ST Ew-pnm T oE Y 46(b-p)OE
b —_@ b — P b — Ny
9 2|Z|EE’ 10 2|:|2EE|’ 11 852(619)25253’
b Nip b — Nig
12 — 2 o m’ 13 — 269 32 m’
26 (b- p)’ 2 B 4k2€2 (b p)> 2 @
Ny
= — 4.2.142

onde os simbolos [J e B sao fun¢des do momento (p*) e do campo bumblebee (b#), possuindo
o seguinte formato:

H=p"+£6(b-p), (4.2.143)
= (b-p)° —b*p>. (4.2.144)

J& os coeficientes representados por N; sao:
Ny =€ (46 + £%) OB + £7pt, (4.2.145)

Ny = [pP*F (p) + A6 (b p)*] + 4XR7P* (b p)' O
+&% (b p)* O Fy (p) — A6®p" [b'p" — 4 (b-p)* +26°p° (b- p)*] . (4.2.146)

Ny =V3[0*p' —€(b-p)’E], Ne=+V3[¢(b-p)* —p?], (4.2.147)
Ny =p*[p*—£(b- p)2}2, Nip = p* [20p* = 3(b- p)*] — 26p* (b- p)° 5, (4.2.148)

Nis = Fy (p) € B0 —16€° (b~ p)* [ +&r°07p" [2(b- p)* — 0°p°] + K7p" [20°° = 3 (b~ p)?]
(4.2.149)
N =p* [p* = €(b-p)?], (4.2.150)

sendo F} (p) e Fy (p) dados por:

Fy(p) = 16X [(b-p)* + b*p?] +p°, (4.2.151)
Fy(p)=x2(b-p)* [(b-p)* + b*p*] + 16p* O. (4.2.152)

Com isso, o propagador de Feynmann para o graviton no cendrio com violacao da simetria de
Lorentz é

i Ny 1) @ _ 1,0-0 Ny (0-w)
A viaff — m P v,a + P vaB ~ ot uva P v,a
uv,af 53{5252(17'1?)25 pv,af3 pv,a 2 w8 2)\/1252(b~p)452 pv,af3
Ns (0—6w) p2 ~(1) p2 ~(2) Ng = (%)
+ —— + — 11 + —=II 4+ —— 11
25 (b . p)2 ] pvsef 5 (b . p) B uv,af3 B puv,af3 45 (b . p) B puv,af3
\/§P2ﬁ(ez\) p* F(A) N fiwA—a) Nig = (WA—b)
B E’ /’LV7O‘B + BZ /'“/7056 2 2 2 },LI/,OLB 2 2 /'“/7055
2 2 8¢*(b-p)" I 28(b-p)" U

Nis (W) Ny = (AX) }
+ I + —— =11 . (4.2.153
1 (b )R s T aE e p e s [ - (12153)
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A partir do propagador A, .z extraimos as seguintes relacoes de dispersao

B=p"+£&(b-p)° =0, (4.2.154)
= (b-p)’—bp*=0. (4.2.155)

Vamos analisar cada uma separadamente e verificar se os modos obtidos sao causais. Para
isso, consideraremos duas diferentes configuragbes para o campo bumblebee, uma tipo-tempo,
b* = (by,0), e a outra do tipo-espago, b* = (0, b).

As raizes de H = 0, para um campo de fundo genérico b* = (by, b) sao dadas por:

B &by |b| |p|cosb + |p| \/1 +£ (bg — |b|2c:os2 0)

4.2.156
1+ b2 ’ ( )

Dbo

onde usamos b -p = |b| |p| cos . Note ndo haver nenhuma restrigdo explicita quanto a configu-
racao do campo b*, ou seja, pg possui solucao bem definida em ambas configuracoes: tipo-espago
e tipo-tempo. Iniciamos considerando o caso em que o campo bumblebee é tipo-tempo na eq.

(4.2.156)), que produz:
_ _Ip[V1+8b p|
po =+ S0 4 . (4.2.157)
1+ &b; 1+ E02

A velocidade de grupo associada é dada por

1
Uy = —————, 4.2.158
RN ( )
sendo menor que 1 desde que £ > 0. A velocidade de fase uy serd
up = ‘p—o| —uy < 1. (4.2.159)
p

Portanto, este modo é causal para uma configuragao do tipo-tempo com £ > 0. Vamos examinar
o caso de uma configuracao tipo-espaco, neste caso a eq. (4.2.156|) torna-se:

po =+ |p| \/1 — € |b]?cos? 6. (4.2.160)

Neste caso, a velocidade de grupo tem a forma a seguir:

U, = \/1 — £ |b]* cos? 6, (4.2.161)

que sera menor que 1 para & > 0, e S|b|2 < 1. Em resumo, o modo de propagacao associado
ao polo H = 0 é causal nas duas configuracoes possiveis para b* com a mesma restricao sobre
a constante & (€ > 0) e a restrigio adicional & |b|* < 1.

Vamos agora olhar para o segundo polo [J = 0. A solugao geral deste modo é dada pela
expressao

po = % [bo cos ) + \/(|b|2 — b) sin® 0] : (4.2.162)

Note que agora temos uma restricao importante, a raiz quadrada nao é definida para nimeros
negativos (dentro de R). Portanto, devemos ter

Ib]* — b2 > 0, (4.2.163)
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que representa uma configuragao tipo-espaco, ou seja, para o polo [J = 0, o campo b* nao
admite uma configuragio tipo-tempo. Assim, para b* = (0,b), a eq. (4.2.162)) torna-se

po = £ |p|siné. (4.2.164)
A velocidade de grupo desse modo equivale a
ug = sinf <1, (4.2.165)

sendo igual a velocidade de fase uy. A relagdo de dispersao representada na eq. ,
embora esteja de acordo com o principio da causalidade, reflete um comportamento fisico
exotico, onde a energia do modo depende crucialmente da direcao de propagacao, ou melhor,
o angulo formado entre o momento linear do graviton e o vetor de fundo b, que representa o
campo de violacao da simetria de Lorentz.
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CAPITULO

Conclusoes e perspectivas

Esta dissertacao tratou da revisao de conceitos da gravitacao de Einstein-Hilbert, com énfase
no célculo do propagador de Feynman do graviton na teoria gravitacional usual e em modelos
gravitacionais alternativos. Os desenvolvimentos aqui realizados podem ser aplicados em outros
cenarios ainda nao explorados na literatura, o que constitui uma motivagao adicional para esse
estudo

No capitulo 2, realizamos uma breve descricao do método de projetores tensoriais para o
calculo do propagador em teorias de calibre de spin-1, apenas para familiarizar o leitor com o
formalismo que foi empregado em todo este trabalho.

O capitulo 3 destina-se a apresentar a base de Barnes-Rivers como ferramental apropriado
para calcular o propagador do graviton em qualquer teoria gravitacional nao-massiva, e cuja
lagrangiana seja escrita apenas em termos do tensor de Ricci e suas respectivas contragoes.
No final, aplicamos o resultado obtido para a gravitacao de Einstein-Hilbert e verificamos que
a relacao de dispersao dessa teoria é compativel com a das ondas gravitacionais planas, com
velocidade de propagacgao igual a c.

No quarto capitulo abordamos dois modelos gravitacionais alternativos, o primeiro consiste
em uma versao estendida da teoria gravitacional de Einstein-Hilbert modificada por termos
do tipo R* e R, R". O propagador do graviton obtido nesses nos permite obter dois no-
vos modos massivos de propagacao: um possui relacao de dispersao em conformidade com a
causalidade, porém, o outro modo a viola. Este resultado evidencia a dificuldade de se obter
uma teoria gravitacional consistente (sem téaquions) e que seja renormalizavel, pois um graviton
massivo, por si s0, nao ¢ necessariamente problematico, podendo tornar a gravitacao renorma-
lizavel sem comprometer a unitariedade . Ainda no capitulo 4, consideramos a gravitacao
de Einstein-Chern-Simons, que é uma teoria para gravidade em (2 + 1) dimensdes. Neste mo-
delo, considerado um “toy model”, os operadores que constituem a base de Barnes-Rivers nao
formam um conjunto fechado. Vimos que a estrutura antissimétrica do simbolo de Levi-Civita
implicou na necessidade de obtencao de uma versao estendida para a base de Barnes-Rivers,
que permitisse calcular corretamente o propagador num cenario de (2 + 1) dimensées. O pro-
pagador obtido possui, além do polo usual, um polo adicional massivo que é compativel com a
causalidade e pode tornar a teoria renormalizavel .

No quinto e tultimo capitulo, Consideramos uma teoria de gravitacao constituida pelo aco-
plamento entre o campo bumblebee (b*) e a lagrangiana de Einstein-Hilbert. Aqui também se
faz necessaria uma extensao da base de Barnes-Rivers, através de projetores que contenham o
campo bumblebee, que é o violador da simetria de Lorentz. Além do modo nado-massivo, ob-
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tivemos mais dois modos de propagacao, ambos possuem relagoes de dispersao que respeitam
a causalidade. No entanto, a relacao de dispersao associada ao modo [ = 0 apresenta um
comportamento fisico inesperado, onde a energia passa a depender do angulo entre a direcao de
propagacao e o campo de fundo (b), que é o responséavel pela violagao da simetria de Lorentz.
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APENDICE

Variagao do escalar de Ricci e de 9 (/—g)

Para calcular a variacao do escalar de Ricci, vamos escrevé-lo na forma contraida R = ¢"'R,,,,
de modo que vale

dR=10(9""Ruw) = Ruog" + g""oR,,.
A variacao do tensor de Ricci é dada pela identidade de Palatini |11,
SR =V (6T70) =V, (6T*,0) (A.0.1)
sendo
V3 AP = 0\AF + A"TF ., (A.0.2)
a derivada covariante. Podemos demonstrar a eq. [A.0.1] variando cada termo do tensor de
Ricci
SRy = O\ — 9,617 x4 6T, Ty — 10, T s + 1960 0n — T40,60%0. (AL0.3)

Para calcular esta expressao, precisamos encontrar uma forma para o termo (5F’\W. Para isso,
partimos da diferenciacao da matriz inversa,

59/\V = _gpkgavégpm (A04)
e os simbolos de Christoffel de primeiro tipo sao dados por
1
Loy = g I = 3 (Ov9uy + 0uGuy — O49u) - (A.0.5)

Podemos entao escrever a variagao dos simbolos de Christoffel como
0T = 6 (9" T ury) = Tpuy0g™ + g226T ),
= =979  jury + 9”0 v,
= _gp/\(sgwrg;w + %Q'DA (0009p + 0u0Gup — 0p09)
0T = 19”A (0009p + 0469up — 0p0gu — 217 110G o) - (A.0.6)

2

Como 2I'? ,,09pe = 1 1009pe + 17 11,09,0, Vamos entao somar e subtrair este termo na equagao
acima, de modo que temos:

1
51“)‘“1, = 59”’\ (0u9up + 0409y — 050G — 17 116Gps
—1,09p0 + 1710900 + 110900 — 170900 — 17 1000,0) -
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Renomeando os indices contraidos, surgem termos que podem ser identificados como a derivada
covariante,

1
51—‘/\#1/ = §gp>\ <8u6.gup - Fauu(sgpa - Faupégau) + (8uégup - Fauu5gpa - Fapudgow)
— (9091 — T 460900 — T0p0Gop) ,

1
6T, = 59’“ (Vb9 + Vu0gup — V 00,) - (A.0.7)

Importante frisar que estamos considerando a métrica como sendo uma matriz diagonal, por

isso que as egs. (A.0.4) e (A.0.13) nao possuem problemas na sua concepcio. Na eq. ([4.0.7),
desde que dg,, seja um tensor, 6F’\MV também serd um tensor. Portanto, podemos usar a
definicao de derivada covariante para simplificar a expressao . Somando e subtraindo os
termos FAWFC“M,\ e F’\WI‘”,,,\, temos

SRy = O\0TA 0 + 6 (07,01 00) — 0 (T T%0) — 6 (DYl00)
— [0,6TM 0 4+ 0 (T7,,T%00) — 6 (T*wIan) — 0 (TuI0n)],

que pela definicao de derivada covariante pode ser escrita como
SRy =V (6T7,) = V, (0T ,) - (A.0.8)

Logo,
6R = R, 69" + g" [V (6T 0) — V., (0T*,0)] -

A variagdo do termo 6 (/—g) é
0 (vV—9) = —=——=dg. (A.0.9)

A variacao de g pode ser escrita como

Jg
59 = —28q,,, A.0.10
g 0o 9p ( )

e sabemos que o determinante de uma matriz pode ser obtido pela seguinte expressao
g =det (9"”7) = ¢ Ay, (A.0.11)

onde AP’ representa a matriz dos cofatores da matriz em questdao. Assim, ao derivarmos a
expressao acima temos:

dg

= AP°. A.0.12
99,0 ( )
De modo que podemos reescrever a variacao de g como:
dg "
09 = =—0gpo = A" 0pq. (A.0.13)
090



ou ainda,
AP = (99)".

Logo,
o\t
69 = (99")" 0gpo
como o tensor métrico é simétrico, a operacao de transposicao nao causaré alteragao
09 = 99" 0gpo-
Finalmente,

1
6 (V=9) = —57=99"09ps = 5V 99" 050,

por meio da eq. (A.0.4)), temos

i (V=g) = —%\/—_ggpaég””-
Assim,
6 (vV—9gR) = /=géR + Ri (v/—g)
= V=g | Ruwdg" + Vi (¢"6T ) — Vo, (g"0T,0) — %Rguﬁg“” ,
onde usamos o fato de que Vyg"” =0 e g,,09"" = —g" g,
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APENDICE

Expansao em segunda ordem da
lagrangiana de Einstein-Hilbert

Vimos que a versao linearizada da lagrangiana de Einstein-Hilbert possui apenas termos em
primeira ordem no campo do graviton. Para encontrarmos a sua expansao adequada, vamos
buscar pelos termos de até segunda ordem para cada um dos entes que compoem a lagrangiana

SEH:/\/—g (9w R [9,] dz?. (B.0.1)

A expansao a ser adotada para a métrica é a seguinte
Guv = Nuw + €h#y- (B02)

O primeiro passo é obter a métrica inversa e a raiz do determinante da métrica. Para pequenos

valores de € teremos
leh| < 1, (B.0.3)

e podemos aplicar a série de Newmann
oo
(I-A)" =) A
1=0

A fim de obter uma expressao para comparacao, podemos reescrever

Guv = My (8% +€h") (B.0.4)
assim
A= —¢eh”,. (B.0.5)
Aplicando a série de Newmann
(I-A)'=T+A+ A+ . (B.0.6)

logo,
g,uu — n,u,/@ (5.«;” 4 ghnl/)—l
guu — n/m [51/;4 . gh’yl{ 4 €2hywh7,{ + O (83)} ’
=" —eh™ + hMh", + O (%) .
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A seguir, usamos a expressao acima para obter a expansao do determinante da métrica, a
identidade que nos permite fazer isso é a seguinte

det (A) = exp [Trlog (A)]. (B.0.7)

\/—det (g) = 1/ — det (1n,.)/det (0%, + eh*,), (B.0.8)

sabemos que det (1,,) = —1, e det (6%, + eh",) = exp [T'rlog (6", + €h",)]

\/m = /exp [T'rlog (0%, + ch~,)],

1
= exp |:§T7" log (6", + 5h"‘,,)] ) (B.0.9)

Assim,

a ~ L, . ~ , . . .
onde usamos v/e® = ez. A expansao em séries da funcao logaritmica de uma matriz é dada por

log (A) = f: (_1)n_175‘4 — I)n, (B.0.10)

o termo [ é matriz identidade que nesse caso é representada pela delta de Kronecker, assim

(_1)n_1 (6HV + 6hﬁl/ - 5511)71

)

NE

log (6%, +¢eh”,) =
n

n=1

()" (k)" (B.0.11)

)
n

WE

3
Il
_

logo

n 1 n
hl{
\/—det (g,,) = exp Trg G ] , (B.0.12)

usando a expansao em séries da exponencial

Vodet () =3
k=0

=1+ %5h + éﬁ (h2 — 2h’ﬂ,h7y) + O (53) )

Essa passagem para a tltima linha é a tnica que ainda nao estid completamente clara, no
entanto, obter o restante dos elementos é bem intuitivo. Para os Simbolos de Chirstoffel

k
, (B.0.13)

1 = (=1)"" (ehm,)"
§TT;

n

(e 1 v
I = 59 " (Ougry + 0 Gy — Oy Gu)
1

N7 —eh™ + e*h*"h7,, + O (63)] (€0uhy + €0, by, — €0yhy) (B.0.14)

=3 [
onde usamos o fato de a métrica de Minkowski ser constante, consequentemente 9,7,, = 0, o
que resulta

52

re,, = g (Ou®s + 01 = 0 hyu) = S (Ol + 07, = Ohyw) + O (),

I =eG% —?h*,G7 0 + O (€7), (B.0.15)
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definimos a quantidade
1
gap,l/ = 5 (a,u,hau + 8llhaé,u - 8ah/u/) 3 (B016)

que serad util na simplificacdo das expressoes a seguir. O tensor de Riemann, em termos dos
Simbolos de Christoffel, possui a forma

R = 0,1% 0, — 0,1, + 1% 17 — T " 1, (B.0.17)
assim o tensor de Ricci R, pode ser escrito como
RMV = —28[,, qu{]# + QFHu[V r alks <B018>

os colchetes nos indices fazem parte da notagdo compacta para antissimetria. Substituindo os
Simbolos de Christoffel obtidos anteriormente, podemos obter

R,W = —268@ g N T 252Q”y[u g« a]k- (B.O.19)

Finalmente, podemos obter uma expressao para o escalar de Ricci que é o termo que compoe
lagrangiana de Einstein-Hilbert

R=g¢"R,,,
— [nuu — et 4+ E2RMRY 4+ O (53)} R, (B.0.20)

os termos que irao contribuir sao
" Ry, = —2en0,G7 4, + 25277””9“”[# G ok (B.0.21)

el Ry = 2820 01, G .

Escrevemos os resultados termo a termo

1 1
10, G = 500 = 58,00, (B.0.22)
uy oK « 1 v 1 « 1 R N2 1 v Qo
MG uG el = {ORhON = LOahOh = O W Dby + SO O (B.0.23)
1 1 1
W0 G o = {100k = SR L0, + 1 Tl (B.0.24)

Assim,

1 1 .,
R=—-2¢ (§|:|h — §8M8th )
2 1 puv 1 lo" 1 oA NZ 1 14 no
125 ( 10RO — 0K h = L0 Dby + 0 huadh
2 1 nv 1 pv o 1 ng 3
+ 2¢ Zh @L&,h — Eh &Y@Hh v+ z_lh thj + @) (8 ) s

usando o truque da derivada total, simplificamos a expressao acima

1 1 1
R = —¢(0h — 0,0,h") + 2& (—gaahaah — 5O D, Zaahﬂ"ath> +0O().
(B.0.25)
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A lagrangiana de Einstein-Hilbert, tomada sob a forma

»CE—H = -9 [.g,uu]R [guu] ) <B026>

na sua expansao em segunda ordem pode ser obtida ao substituir as expansoes para \/—g e R

1 1

Lo = {1 b a1 2 ) + O (53)}
1 1 1

x {—g (Oh — 8,0,h™) + 26 (—gé?ah@ah — O D + Zaahwa,,hw) o) (53)] ,

(B.0.27)

1
Le-n = ¢ (Oh = 0,0,") = 5&* (WOh — h), 0, 1)

1 1 1
e (—Zaahc‘)"‘h L, 5aahwayh,m> 1O(#), (B02)

£E7H = —& (Dh — 8#8,,}#“/)
1

1 1 1
2( _— ap T Aau o ~ aop pv .
te ( 10210 — 20 B D, 4 SO0,y — o

1
hOh + 5}@&,}#“’) +0 (&),
(B.0.29)
novamente, podemos simplificar reescrevendo alguns termos usando a derivada total

Lp_g=—c(0Oh—0,0,h")
1 1 1 1
+ &? (Zaahﬁah — iﬁuh&,h’“’ = Zayhuaauhw + éﬁah“l’&,hm> +0 (53) . (B.0.30)
Podemos identificar esses resultados da seguinte forma:
£y = —(@h—-0,0,n"), (B.0.31)

é o termo da expansao em primeira ordem, também conhecida como aproximagao para campo
gravitacional fraco, utilizada principalmente na obten¢ao das ondas gravitacionais. O segundo,

1 1 1 1
e = 10ahOh = SOBON — 0 hyaD ' 4 SO D, e, (B.0.32)

serd usado na obtencao do propagador. Uma observacao importante é que fizemos a expansao
Y . . . (0) . , .

na métrica de Minkowski, ou seja, o termo L’ ;, nao aparece porque é nulo devido ao fato de

a métrica de Minkowski ser constante.
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APENDICE

Equacoes de campo em primeira ordem
em hyy

Seguindo a abordagem do Schutz , partimos da expansao
Guv = N + h;,Ll/v com |h;uz| < ]—7 (CO].)
onde também temos
g =" =W (C.0.2)

De forma direta, a linearizacao das equagoes de campo consiste em escrever as equacoes de
Einstein em termos da métrica (C.0.1)), ou seja, devemos escrever as contragoes do tensor de
Riemann (tensor e escalar de Ricci) em termos da eq. (C.0.1)). Vimos que o tensor de Riemann
pode ser escrito em termos dos simbolos de Christoffel:

Ryaﬁu = aﬁryw - aulwocﬁ + Fyﬁvlwau - FVWFWO@ (C~0~3)
enquanto os simbolos de Christoffel sao:
14 1 14
o= §g7 (OuGva + 0aGyu — OyGap) - (C.0.4)
Substituindo as equagoes (C.0.1) e (C.0.2) em (C.0.4)), temos:

v 1 1% v
r ap — 5 (777 —h? ) [@t (nva + hva) + O (nw + hw) - 5’7 (77au + hcw)] .

Usando o fato de a métrica de Minkowski ser constante, temos:

1
Mo = 92 (" = ") (Ophiya + Oalinyy — Oyhay) -

Vamos considerar apenas termos em primeira ordem em |k, |, ou seja:

1
o = 57771’ (auhva + Oy — awhau) : (C.0.5)

Observe que, ao substituirmos (C.0.5) em (C.0.3)), os produtos de dois simbolos de Christoffel
geram apenas termos de segunda ordem em |h,, |, isso reduz nosso trabalho apenas ao calculo
dos dois primeiros termos do tensor de Riemann, a saber:

14 1 14 1 14
R app = 577A{ 05 (auh'ya + Oaliyy — avhau)] - 577V [au (aﬂhva + Oahpg — awhaﬁ)] )
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1
Ruagu = 5777'/ (658ahw — 8587%“ - 8M8ah%g + auayhag) . (COG)

Lembrando que a métrica de Minkowski assumiu o papel de abaixar/levantar indices tensoriais.
De fato:
1
Rvaﬁu = T]V)\RAQBH = 57711%77% (aﬂaahw - aﬂavhau - a/taahvﬂ + 3u87ha6) )

~y
61/

resultando em:

1
R,,a/ju = 5 (a,gﬁah,,u — 856,,hw — 8M8ah,,5 + aua,,hag) .

Essa é a expressao para o tensor de Riemann num regime de campo gravitacional fraco. En-
tretanto, ainda nos falta expressar o tensor e o escalar de Ricci, dado a seguir:

Ry = 1" Roapy, (C.0.7)
logo,
R = 31" (050uu — 030y — 0,00 + 0,0, ). (C.0.8)
ou ainda,
Ry = % (850a1°,, — Ohay — 0,000 + 8,0,h0") (C.0.9)

onde O = 090;, e
h=n""h,s ou h = hPg.

A partir de (C.0.9), podemos obter o escalar de Ricci R = n**R,,,,

1
R =™ (050ah", — Ohay — 9,00k + 9,0,h0")

1
R=3 (950,0°* — Oh — Oh + 9,0,h™) .
Fazendo uma mudanca nos indices contraidos do primeiro termo, escrevemos:
R = 0,0, —Oh. (C.0.10)

Esse é o escalar de Ricci para o caso de um campo gravitacional fraco. Por meio das equacoes
C.0.9) e (C.0.10), podemos construir o tensor de Einstein covariante. Substituindo (C.0.9) e
C.0.10) nas equacoes de movimento de Einstein,

1 1
G = 92 (aﬁavhﬁu — Ohyy — 0,00 + 8,0,h,) — 92 (M + ) (8p8,\h”’\ —U0h),

(950,h°, — Ohyy — 0,0,h + 8,0,h,7) — %n#,, (8,050 — Oh) |

1
2
1
G = 5 (950017 — Oy = 0,0 h + 0,0,h" = 0y Dp05h" + 1 ) (C.0.11)
Assim, as equacgoes de Einstein em primeira ordem sao:

930,h° . — Ohyy — 0,0,k + 0,050, — 0,,0,06h" + 1, 0h = 2KT,,. (C.0.12)
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APENDICE

Calculo da contracao Suyﬁ)\sm,aﬁ

Temos

lea

0
SMV,H/\SH)\,(Xﬁ = 7 (GMO'HQV)\ + E,UUAHVH + Euaneu)\ + euo)\e;m) X

o=
7 (Eﬁwoee)\ﬁ + emwﬁeAa + EAwaemﬁ + ekwﬂgﬁa) ;

apo6s desenvolver todos os produtos, vamos usar o seguinte resultado nas parcelas obtidas:

aUEuomaweﬂwa = aaawnawquHEKwa
= aaa)\ - 6080'77(1)\
= —[0,.

Apos agrupar os termos semelhantes

1 0% 0%
SNV,HASHA,aﬁ = 14 (_Deuﬁeua - Deuﬁeua) + T4 (Euaﬁeuwa + Euaﬁeuwa) )

——T (P(O_e) + P(Q)) + 0707 (€uop€vma + €vop€uma) »
reescrevemos os produtos dos simbolos de Levi-Civita na segunda parcela, sob a forma
€uoBCrwa = Nuw (nawnaﬁ - naanﬁw) — Npw (7701/77045 - 770047761/) + Ny (naunwﬁ - 770'727751/> )

0 que permite expressar:

070% (ezwﬂevwa + Evoﬁeuwa) =0 [277W77a/3 —2 (vaaﬁ + W Tap )
+ (nﬁuwa,u + WoaMpp + NvaWus + wVﬂU}lO&) - (nuanuﬂ + navnuﬁ)] .
Por meio das identidades dos operadores da base de Barnes-Rivers, podemos escrever
070 (€poperma T Cvopbuma) = O [2 (2P0 4 pO=«) 4 pO=0)y _ 9 (2p0=w) 4 plO=i))

+2 (PO 4 pO=)) 4 2 (PO 4 pO=)) _ o (pO-6) 4 pO-) 4 p() 4 p@)]
=0 (2P0 —2p®)
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Substituindo, finalmente resulta:
Suu,msm,aﬁ = —20 (P(O_e) + P(z)) + O (2p(0—0) _ 2P(2))
= —40P®.

Note que usamos 1, 1qs = 2P0 + PO=«) 1 p0=09) a6 invés de 1,705 = 3P0 + PO—) 4
PO=%) Os ntiimeros 3 e 2 destes resultados sido apenas fatores relacionados a dimensio do
espaco-tempo trabalhado.
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APENDICE

Calculo das contracoes da base estendida

Para H( )

[N

r7(2)
H;LV,K)\

(Q;LHA AT QV)\AMH) 0" eaﬁv

(‘9)\ AVA + QHVA;LH> )

COIHOJ — N =

a contracao QAHA,,,\ pode ser simplesmente calculada

HAMAV,\ = ((SAM - w’\u) byb)\,

(b-p)

= byb, — b,

nos permitindo escrever

=(2 —o)n 1 (b-p) (b-p)
HELV),HAP(U ) )\,a/o’ - § |:bub“ B p2 pubu + bubﬂ - 7791/(7# QQB’
(2 —0)k 1 (b : p) -

(2 —0)k 2 (b p)

H/(w),ri)\P(U ? /\vO‘B - gA#Veaﬁ o 3p2 Euueaﬁ

(0%

O proximo é H/w o\

1
o> po-omx L (
LV, KA o — \/§

a contracio 3,0 é nula, pois 8°*p, = 0,

. . 1
S fhor - zme,w> <16,

Hfteuzfz,\P OO 5 = _3i/w9aﬁ-
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1
PO = = (0 Aon 4 OusM + Our + OaA ) X 59”%5,

(E.0.1)

(E.0.2)

(E.0.3)

(E.0.4)

(E.0.5)



1
—
V3"

PODRODN _

AN - VEO!B'

. 7(0A)
Contraindo com IT "y

= (0A Ok 1
H( )P(o 0) Ayaﬁ:_

AN

1
(Q/M/Afi/\ + ‘gf-i)\Ap,u> X §6HA9a67

_ s 2 (b'P)2
bl (-0 s

1 (b-p)° 1
= T = bg_ Quea +_0aA1/7
3¢§( P e

2.2 2
=08 po-own 0P = (-p)" J0-0 1
HMV,H)\P af — \/§p2 PMV,QB + \/__SA/'LVQ‘IB’

onde usamos o resultado 0" A,y = b2 — (b-p)* /p°.

- %

Qaﬁv

2,2 2
-0 F@enen 0= (0-p)” Jo-e | 1
PMV,KAH o — \/§p2 P;u/,aﬁ + \/§0;WAa5'

Prosseguiremos com o restante

~ 1
H(AA) P(Ofe)n)\’aﬁ _ A;WAH)\ « genAeaB’

LV R
p* — (b-p)°
- 3—]?2/\#1,8&5.

2,2 2
(0—0) (7 (AA) kA b’p* — (b-p)
Pﬂu,n)\ T af 3p2 Q/WAOC/B'

rr(wA—a -0k 1 P
HL,,’AM PO o — (el + WirD + Wyl iy 4 woal ) X 5 s = 0,

pois 9“)‘wm = 0.

~ (WA— B 1
H( A b)P(O G)HA’aﬁ _ (wijH}\ _‘_wm\ij) « genAeaﬁ’

AN
B0
3p2 uYap-
)= v*p? — (b-p)?
P}igﬁe)\)n(w/\—b)nAQB _ p ( p) Quuwaﬁ

~ (w . . 1
HELVi))\P(O_e)KAvaﬁ = <W;w2ff)\ + OJH)\ZM,/> X 59’0\9(15 =
~ ~ ~ 1
H(AE) P(O_Q)HA,QB = (A“VEH)\ + A,.;)\Em,> X 5914)\9&67

LUK
= (p)

Sl
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(E.0.6)

(E.0.7)

(E.0.8)

(E.0.9)

(E.0.10)

(E.0.11)



2,.2 2
(0-0) (A Vp*—(b-p), &
P/w KA H( ) af = 3]?2 ‘gyuzaﬂ'

Agora calcularemos as contracoes de P(u)ag

~ 1 - - ~ _ 1
) (PO s = B <9ﬂm2m + 00wk + Oy + HVAE;m) *3 (07aw™s + 0% aw”s + 0% gwa + 0 sw"s)
(E.0.12)
- 1 R
) (PO 0 = 1 [H“HEM (0%ats + 070 ) + 0n B (Baw”s + 0*50")
+6Vﬁi,u)\ (eﬂaw)\ﬁ + enﬁw)\a) + 91/)\2/“{ (QAQ(UHQ —+ QAIBMHO{)}
1 ~ ~ ~ ~
HEJ«V)K)\P(DK)\ af = Z |:0MOC <EV)\WA5 + Euﬁwnﬁ) + QM/B (EV)\WAO( + Eunwﬁa>

+0VOé (iu)\u}A5 + iww%) + 9,,/3 (iu,\w)‘a + i,mw“aﬂ
observe que

iu)\w)\ﬂ + ilil{wﬁﬂ - (bzlp)\ + b>\p,,) WAE + (bupn + bnpu) wﬁﬁv
= 2b,ps +2(b-p)wys,

assim,

- 1
) PO = 5 {0ua [bvps + (b~ P)wip] + 05 [bupa + (0 ) woal
+0va [bups + (b p) W] + 00 [bupa + (b P) Wyal }

- . 1
H/(}I/),H)\P W 5 = 5 (b p) (Opawis + 0uswua + Opawys + 0upwua)

1
+ 5 (0p,ocbl/pﬁ + epﬂbl/pa + euab,u,pﬂ + euﬁbupa> )

(1)

a primeira parcela é P~ 5 e para a segunda iremos usar a notagao da Ref. bups = Xup,

Jri7Ne’
logo "
(1 K l—a
M) W PO g = (b-p) Pl s+ T 0, (E.0.13)
onde
(1) (1-a) (1-b)
HW af HW af + Huv af)
sendo
—a 1
Hffy,aé =5 (0uabups + 0,80,pa + 0uabups + 0,5b.p00) (E.0.14)
_ 1
H/(,LIV,O?% = 5 (eﬂabﬂpy + euﬁbapz/ + Huabﬁp,u + eyﬁbapy) . (E015)

PO W= o= (b-p) P11l

LV,RA pv,af uv,af:
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H(Q)

LUK

P(l)ﬁ)\,aﬁ (eunAuA + H/LAAVI{ + QVKA,U)\ =+ eu)\Aun) (eﬁaw)\/o’ + GAawnﬁ + eﬁﬁw)\oz + eAﬁwHa) )

[\.’)Ir—\

[0, M0 (00w s + 075070 + Ouu i (070w?s + 07 w™,)]

b- p b-p
( ) (Quabupﬁ + Quﬁbupa) ( p ) )

b-p
= 5 (Qlt bl/pﬁ + euﬁbupa + Hyabupﬁ + euﬁbupa) ( p )7

l\DI)—*l\DI)—*[\D —

(0abups + 0,8b,00)

b-p)
pom - D)o (E.0.16)

7(2)
H p2 I‘Ll/7aﬂ.

AN

W FEw  _ (0-p) iy
P;u//@/\]‘_‘[ pQ Huua,@’

1> p(l)m g =

. : 1
e (%Em + ‘%Ew> X 5 (0%aw’s + 0%0w"s + 0%gw’o + 07 5w%)

= QMI/ZHA (QﬁawAﬁ + HAQCUH/B + 9’{/3(4))\04 + 0’\/300”””&) ,

_
-5

5

0#,, (in)ﬁnaw)\g + i,{)\e"{gw}\a> s (E017)

8-

if{)\eﬁaw)\ﬂ = (bup/\ + b)\pl/) enaw)\ﬁ
= baprw’s — (b p) warw’s,
= bap,B - (b : p) Wap,

M PO 0 = %GW [baps + bspe — 2 (b p) wag] ,
= %euyiaﬁ - % (b~ D) Opap- (E.0.18)
PRI 0 = 805 = = (0- ) b
H,(qug,\P(l) % (O Niox + Oua ) X % (0% aw™s + 010w + 0% g’y + 61 5w",)

_ %Quu/\m (9”0&0’\5 0w+ 0 s QABWHQ) ’

= %9@ (baps + bgpa — (b p) wap — (b ) Wap) (bp p>,
(5372) O Sas — z%ewwaﬁ. (E.0.19)
Pl GOV g = (\%52) Sy bap — Q(féf Wuvas.
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~ 1
AN P(l)mw = Ay X 5 (0mawAB + gxawnﬁ + QHBWAQ + HAgw"‘a) 7

AN
= ij (A,{)ﬂﬁaw)\g -+ A,q)\enﬁw)\a) )

b-p
— Ay (baps — (b D) was + b — (b P) was) %
b- . b-n)>
= ( 2p) Aul/zaﬁ - 2¥Auywaﬁ~ (EOZO)
p p
2

T(wA—a 3 1 K K K K
waﬁc)\ )P(l) /\,Ocﬁ = (wuHAVA + wu/\Alm + WVHA;M + WVAA;m) ><§ (‘9 aWA,B + HAQW 8 + 0 BCUAO( + 9/\5(,0 a) ,

I POR o= A8 awus + Aa8 500 + Anatwns + Ayn8 50sa,

ﬁ,l(:iﬁ;\a)P(l)n)\7aﬂ = bybawys + bubgwua + bubaw,g + bubgwyg

— (bz/pawﬂlg + bupﬁwua + bupaCUyﬁ + bﬂpﬁwya) ( p.Q s (E021)

~(wA—a K T(wA—a (b : p) o
H/(ﬂ/,f-i)\ )P(l) Avaﬁ = HLV,Q,B ) — 272/11/“—70{,8- (E022)
- ~(wA—a b- ad
P]Elll?ﬁj)\n(wAia)K)\,aﬁ — H,l(l‘uﬁ)zﬁ ) _ Q%W,uuzaﬂ- (E023)

e 1
TP s = (W Aor + Werl) X B (070w + 07 aw" s + 0% gy + 02 0"s)
1

= 5 (WMVAHAHKawAﬁ + w,uuAn)\eAawHﬁ + wuVAHAQHﬁwAa + WMVA/@/\H)\ﬁwna) ’

= w,ul/An)\e,{aw)\B + wuuAn/\eﬁﬁwkav

(b-p) (b-p)” (b-p) (b-p)”
= Wy (Tbapﬁ - D Wap + p2 bﬁpa - p2 Wap |

2

(b-p) 2(b-p)°

= Wur bap +bpa - WapWuv,
yw (DaPp + bgpa) e - AWy
- (A b- . 2(b-p) (0w
D pom (pQP) Sy — % PO (£.0.24)
2
(1) FrwA=brx  _ (b-p)c . 2(b-p) (0—w)
Ppu,fc)\H af — pg E/U/waﬂ pg P,uy,ozﬁ :
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r1(w ad ~ 1

HLVi)AP(l)m\yoéﬁ = <W,u1/2ff)\ + Wn)\zlw> X 5 (QHQWA,B + eAaWH,B + QK,BW)\Q + eAﬁwRQ) 7
1 ~

- 5("}/.”/25)\ (QﬁaWAB + Qkawnﬁ + Hnﬁw)\a + QABWHQ)

= W (imé’”aw’\g + f]m@’*gwkg s

= W [baps — (b D) Wap + bspa — (b p) Wag] ,
= YW — 2 (b D) Wapwpw,

= W Sas — 2(b-p) PO ). (E.0.25)
1 - w K 0—w
P}SV?I{)\H( ») )\7046 - EMVW‘X/B —2 (b p) ;51/ ozﬁ)

™) PO = (AWEM + Amiw> X = (0% 0w+ 0w + 0% g + 0 5w L), (E.0.26)

N | —

0L PO 5 = Ay (baps — (b D) wag + bspa — (b D) wag)
- b- b-n)> b- b-p)?
+zw<<pf)bapg—( ), () waﬁ>7

8 8
pr p? “ p?

= b 2(b-p)? -
IO PO 5 = NS —2(b- p)waﬁAW+(pp>zaﬁzW— ( f) W

p nz
o wA—a 2(b- p 2 -
= AWZQB -2 (b . p) Aw,wag + (b p) ,LwAaB ) (p2 ) Zuuwaﬁ. (E027)
(1) T(AX) KA . (wA—a) 2 (b . )2 ~
PMV,HAH aB = EMVAaﬂ (b p) leAaﬁ + (b p) H,uu ap p? w#’/zaﬁ
O terceiro projetor é P(U)QB
1) (2)kA 1 S S S S 1 K o\ A pk 1 KA
Huu HAP af — 5 (@mz}uk + euAEm + HVHEH)\ + guAEu/e) X 5 (‘9 ae Jé] +6 a@ 5) — g@ 9@,8
(E.0.28)
note que
iy)\e)\ﬁ = (bl/p)\ + b/\pu) 9>\5
=bapy (15 — w's)
= bgpy, — (b~ p) wp
Portanto,
1
) n PP 05 = 5 (B (baps — (0~ D) wip) + 26,5 (bapy — (0~ D) )
+20,0 (bgpy — (b p) wus) + 20,5 (bapp — (b P) Wya)]
1

~ 5 12 (bupy — (b-p)wuw) + 2 (bupy — (b D) wuw)] Oags,
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~ 1
HL?,HAP(Z)H)\,M - 9 (euabb’pu +0,8bapy + Ouabpp, + euﬁbapu)
1
3 (b-p) (Wuplua + Wyabup + wusbua + wuaez'fi)
1
= 3 Basbupy + basbupy — (0 1) (Wwbap + Wibas)]

~ 1

Hflll/),m\P(mH)\vaﬁ - 5 (‘gﬂabﬁpl’ + eﬂﬁbapll + Quabﬁpﬂ + Qvﬁbapﬂ)

1
— 5 (b p) (Wpbua + Weabus + Wusbua + Wuabyp)

2
1
3 [(bupw + bupy) Oap — 2 (b~ p) W bag]
- _ 1~ 2
Hflll/),m\P@)H)\,aﬁ - Hflll/,olz%’ - (b ’ p) Piillj?aﬁ a §Euv9aﬁ + g (b : p) wﬂueaﬁ' (E029)
2 1(1)k l1—a 1 1 = 2
P/EV?KXH(I) Ayaﬁ = H;(u/,a[)? - (b ’ p) P/E,V?aﬂ - geuvzaﬁ + g (b ’ p) e,ul/waﬁ-

H(Z)

1 1 1
,LLV,H)\P@)H)\,Oéﬁ = 5 (QUKAV}\ + eu)\AVﬁ + HVNAN)\ + QV)\ANK) X [5 (enae)\ﬁ + 9)\(1955) — 5(95)\(9a,8:| ’

(E.0.30)

- . 1 (b-p) (b-p)
12, PO, = 5 [eua (bybg - 7bupg) + 0,5 (b,,ba - 75%
b-p b-p
+ eya (bubﬁ — (]9—2)bupﬁ) + 9,,[3 (b,uba — <p—2)b'upa):|

1 (b-p) (b-p)
— g [(byb“ — p—Qpr“) eaﬁ + (byb# - p—Qb#py (9&5 s

~ 1
HLQB,HAP(Q)H)\7O¢5 - 5 (euab'/bﬁ + evabubﬁ + euﬁbvba + QVBbuba)
b-p
_ (2p2) (bPsOpe + buPabyus + bupsbue + bupabis)
1 b-p
- g (beH + bl/bu) Haﬁ + % (bl/p,u + buPu) 9a67
- (2 . = (2 (b-p) -0y 2 (b-p)¢
H[(J/l/)7ﬁ',>\P(2) Aaaﬁ = HLV{aﬁ - p2 Hfj,y7a% - gAuueaﬁ + 3—]?22“119055' (E.O.Sl)
2 F@rx 172 (b-p) (1-p 2 (b-p) ~
P,uzl,n)\H( ) af = H,uu,aﬁ - p2 H,ul/,a,@ - geuVAOéﬁ + 3—p20MVZOéﬁ‘
7O%)  p(2)kA 1 S S Lo o A gk Lo
P ap = 7 <9uu2m + HRAEMV> b (0%0%5 + 0*,0%5) — §0 Oup |
102 p2)sx 5= ig PN 2(9” 9)‘5 Ty en/j) B 19”/\9 ;
2N « \/g Hy K, 9 « o 3 o
=+ i6/{)\2 v 1 (eﬁae)\,@ + 9/\016%5) - 1(9“(%5 s
V3 T2 3
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. 1 ~ 1 ~
H(QZ) P(Z)n)\a _ 95 3 , enaeA + ez\aen . 9& 3 Ve/i/\ea :
AN a8 2\/§ A ( B 5) 3\/§ A B
1 - 1 -
= —Y b0 — —=2,,0,3 =0. E.0.32
\/§ w3 \/§ waf ( )

~ 1 1 1
0A) p2)s\ K A A pr KA
H;LV,H)\P( ) af — % (Q;LI/AK/\ + QHAAMV) X |:§ (9 049 B _|_ 0 Oﬁ ﬁ) - g@ 90[,3:| 5 (E033)

1 1 1
HLGI,A,z)\P(Q)HA of = EQMVAHA |:§ (Qnaekﬁ + Qkaemﬁ) B §9m9a5}

1 1 1
+ ﬁ%/\uu {5 (0705 + 070075) — 50”9&6} , (E.0.34)
oo P = ie,WAmeﬁaekﬁ ~ LewAmemeaﬁ + iemAweﬁaekﬁ - iAweaﬁ,
# ’ V3 3v3 V3 V3
(E.0.35)
2
0N p@wr L _-p)s (b-p)
H,w SV = \/gbabﬁew NG Laplu + V3 Wapluw
1 (b-p)? 1
— ﬁe‘weaﬁ [b2 — p2 + ﬁAuyeaﬁ - %Awﬁa{g, (E036)
- 1 (b-p), < (b-p)° p) vp? — (b-p)* 00
0A) p@kx .+ . (0-9)
HNV,I{AP af — \/gQMVAaﬁ \/§p2 QMVZaﬁ + = \/_ 2 IW Wap — \/§p2 P/w aB*
2 2 92 2
(2) TrOA)RX 1 ( ) (b ) b*p* — (b'p) (0—0)
P H af — _A yHa E yga + yea - —P v.aB®
By KA B \/3” g \/—2# B \/—2 WuvYap \/§p2 pv,of

1 1
HLI;%P(Q ap = NNy X ) (07205 + 070075) — 59’”0&[3 :

1 1
= 5/\}1A (0726075 + 0700"5) Ny — gAHAWAWQQB,

. 0p* — (b-p)*
= A/{)\e a‘gAﬂAm/ - 3—p2AMV‘9a5

b- - b-p)’ v2p? — (b-p)°
:AWAaﬁ_(pp)A ZQBJF( Py p*—(b-p) Ao,

2 v pg pr*aB 3p2
_gan 0P, & (b- p)QA v*p* — (b- p)QA p E
nv,af p2 uvHaf + p2 ;u/(.Uaﬁ - 3p2 —NpvVas- ( 037)
2 2 9 2
(2) S (AA)RA ay  (b-p)e (b- p) bp* — (b p)
Prpes s = s — o owlas + o = =35 Owhas.

w 1 1
HLuAfeAa)P @ 5 = (@Wuelor + Wy + Wl + wia ) X B) (070075 + 0°,0"5) — §0HA0aﬁ ;

=0.
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oA 1 1
@A PR 0 — (WA + weal) X 5 (05075 + 02,0"5) — gemew ,

AN

1 1
- §WWAM (07,05 + 02,07 5) — waAmemeaﬁ,
b*p? — (b-p)*
= wuuAn)\eﬁae/\B - pT(Qp)wuuea,Ba
(b-p) & , (b-p)° v*p? — (b p)°
= WuuAaﬁ - 7Wuyzaﬁ + —ZWMVWQB - 3—1320(}“”0&5,
b-p) & o (bp)? 0-w UPP—(b-p)°
= whapg — Twﬁwzaﬂ + P2 P/Eu,oa,é’) - 3—p2wweaﬂ'
2 F(wA b (b-p) < (b-p)* 0wy P —(b-p)°
P}EV?;{AH( A=) A,aﬁ = Auuwaﬁ - YZMVWQB + p—QP;EV,a,B) - 3—292911”("}045'

» ) : 1 1
HLVi)AP(Z)H)\’aﬁ = <wp,l/2fi)\ —+ w,{)\ZW> X |:§ (eﬁae)‘ﬁ + 9)\(1955) o §05A9aﬁ:| 7
0.

_ (E.0.38)
- - ~ 1 1
Hiﬁi)}\p(Q)nAﬂﬁ = (AWEM + AK)\EW> X {5 (Qﬁaez\ﬁ 4 Gkaenﬂ) _ gemeaﬁ] ’
1 ~ 1 ~
_ §Amz,w (07,05 + 02,07 5) — gAmz:,we“*eaﬁ,
. b*p* — (b-p)°
=3, A0, 0% 5 — 3—]02&”9&5,
- (b-Pe « (-0 0*p’ — (b-p)° <
= Shas = 3 B Sas + Dy = = Subas,
- ~wra) | (0-p)° ¢ *p* = (b-p)’ e
= S has — (b p) T2 4 o Swites = — 5o Subag. (£.039)
2 ad K nd ~(wA—a (b : p)2 N b2p2 - (b : p)2 -
P,SV?MH(AE) *as = NwDag — (b-p) wa,ag = TWW/Eaﬁ - 3—2929W2a5-
Para Pﬁ;‘g) :
~ 1 ~ ~ ~ ~
HELll,),H)\P(OioJ)K)\,aB = 5 (eunzl/)\ + e,u/\zwi + eunz,u/\ + 91//\2“1{> X wﬁ)\waﬁv
—o. (E.0.40)
~ 1
HELQZ,)ﬁ,\P(O_W)HA,aﬁ - 5 (QMHAV)\ + euAAmf + QVHA,U)\ + HV)\A;M{) X wﬁAwaﬁa
—=0. (E.0.41)
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(0%) pO—w)rr  _ _*
Huu H)\P af — \/— <
1
— %GHVEK,\w“Awag,

2
= —=(b-p) Ouwag. (E.0.42)

V3

O-w)fosmn 2
P,uu KA 11 ,af — \/g (b p) w,uugaﬁ‘

A
7% /@)\ + ‘9/4)\2#1/> X w" Wap,

(0A) p(0—w)kA _ i KA
Lo P o= (O Ax + OuxBpu) X W wag,

1
= = euuAﬁ)\wR)\waﬂ ’

V3

(bﬁp )2 0,1 s (E.0.43)

2
pO-WFONR (b-p)

AN af — \/§p2 wlﬂ’gaﬁ‘
HL?/?AP(O ”)’”\ = Aoy X w”)‘wag,
(b-p)°
(0—w) TT(AA)KA (b- P)2
Puu KA II af = p2 w,uVAaﬁ

ﬁ(wA_a)P(O_w)H)\ - (WWQAV)\ + wu)\AVH + WVHAH)\ + WV)\AHH) X wn)\waﬁ7

LUK o8
— (WAMA,,)\ + W, Ay + w’\,,A,M + w“,,A,m) Was,
g 2 (WAHAU)\ + CL)I{VA“H) wa67
2(b-p
- (p ) (bupy + bupp) Wap,
b ~
(p DS s (E.0.45)
rT(wA—a)srX 2 (b ) p) N
PAEV H)\)H( A b = 2 w#’/zaﬁ'
p
ﬁ,(j;ﬁ;\b)P((Fw)nA,aﬁ _ (w'LLI/AH)\ + MRAA#V) % WﬁAwaﬁ,
= w,ul/An)\wﬁ)\waﬁ + WHAUJHAA;AVW&B’
b-
= ( p) WupWag + A,u,waﬁ,
b w)
_ | pp i PO 4 Ao (E.0.46)
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2
P(O w)ﬁ(w/\—b)n)\ _ (b i p) P(U—w)
uv, KA ,aB — p2 MV,Q{B

+ wm/Aozﬁ

HL‘;ZN)AP( )nk’aﬁ — <wwjim + wmim,> % w»-’»)\wa67

= i/{/\wﬁ)\wuuwaﬁ + iuuwaﬁa
=2 (b ’ p) WpvWag + Euuwaﬂy

=2 (b p) Pw/aﬁ + EHVWQB

P;Eg KL;)H(WE)HA =2 (b ' p) P/EZO/ alg) + wuuiaﬁ'

H(AE) plo- w)nA7a6 — (Auyi’d\ + Arb)\i;w> « WHAWO@B;

LV, KN
b
=2 (b ’ p) A,uuwozb’ + Mzuuwaﬁ-
—w) e b- p) -
0—w K
P;EV,K)\)H(AE> >\7065 (b p) WMVAocﬁ + ( wuuzaﬁ'
: (0—6w)
Prosseguimos com PW B
(1) —Ow)kA . . - o = 1
Huu,nAP(D ) af — 5 <91m21//\ + euAEm + eunzu)\ + HVAE/M> X ﬁ
ﬂftll/),nAP(O_GW)H)\,OA,B 2\/— (thzu)\ + ‘9#)\21/& + 01/&2#)\ + 91/)\2#/{) 9 Wap;

note que esse resultado deve ser analogo a H P(O O)rA B

1 -~

rr(1 —0w) K
HELV),/@AP(O o) )\’aﬁ - EE“VWQB -2 (b ’ p) WiwWag,
1 - 2 0—
— — Stas — —= (b p) PO,
\/g I B \/§( p) uv,a8
(0-6w) L s 2 (0-w)
P;w KA [ af = %Wuuzaﬁ - ﬁ (b : p) Pumaﬁ :

~ 1
H(2) )\P(Ofew)n)\ﬂﬁ = — (HHKAV)\ -+ QAMAVH —+ QZ,,QAH)\ + QV)\A;M) X

1
s \/3
(e;u-eAV)\ + euAAyn + eunAuA + GV)\A;LN) (9 Wag)

2f
\/_ (9 Al,)\ + 0" AMH> wag,

-
{ ( P

\/g uwWap — \/— 5 ;u/woz/o"

b-p
1/ Pu + A;u/ - %bupu} Wag

(bzzp,u + bupl/>‘| Wap,
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(E.0.47)

(E.0.48)

<9a,8w’$)\ + 9H>\W0¢,8> ’

(E.0.49)

(E.0.50)

(eaﬁwﬁ)\ + enkwaﬁ) ’

(E.0.51)



)= 2 (b-p) <
P(O Qw)H(2)n)\ o = —w VAa RS 4
LV, af \/g 2 B \/gpz

. 1 1
H(QZ) P(ofew)ma (0 Vzn +9,§ E 1/) = 904 WNA _|_9n)\wa ’
AN af — \/_ I3 A A \/g ( B B)
1
= = (s Sorw™ + 00 Spuivas )
2 ~
= 20 bl + S
=2(b-p) PO + Spwas. (E.0.52)
P/ES;Q)\W)IZI(QE) =2 (b p) PMV aﬂ) + wll«l/iaﬁ
1 1
HELGVAQ)\P(O Ow)rA o = % (HW,AN,\ + QH)\AH,,) X % (eaﬁw“)‘ + en)\waﬂ) ’
1 1
= _euugaﬁAnAwﬁ)\ + _euuAnAQHAwaﬁ + Aul/waﬁ>
(b-p)* ,  (b-p)*
T 32 g Oubas - 3\ 7 Opwap + Nywwag,
(b-p)* oo, VP —(b-p)’
-2 PO s & At (E.0.53)
)= b-p)’ v*p? — (b-
P;E?/ :-ceA )H(GA) af = ( p) P(O ‘) + p ( p) wuueaﬁ +w,uz/Aaﬂ'

p2 pv,af3 3p2

1
AN PO 0 — A Ar X —= (Basw™ + 0wag) -

AN \/g
1 1
— \/gA Baprw™ + %Awwaﬁzxmem,
_(-p) vp* — (b-p)*
= \/§p2 AWHQB TpQAW/waﬁ. (E054)
2 2
(0—6w) TH(AAN) KA _ (- p) b p*—(b-p)
P,uu KA II a8 — \/g 9 9 A \/§p2 wuquzB'
1
HLV o )P(O Ow)k af = (ww{Ay)\ + w,u,)\ch + CUVHA”)\ + wy,\AW) X ﬁ (Qaﬂw”w‘ + enAwaﬂ) ’
= 7 (w,u,n wx Tt w,LL)\Al/FL + wsz,u)\ + WVAA;M) eaﬁwm\
2 K
= % (w pAon +w uA;m) Oap,
2(b-p
= \(/—p ) (bupu + bupu) ‘904,87
_2(b
\(/gpp) Sy bas- (E.0.55)
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P(Ofgw)ﬁ(wAfa)n)\ _ 2 (b ) p) 9#1/2 5.

UV KA af \/‘sz

ﬁ(“’A—b)P(Owa)nA

AN (eaﬁw"{)\ + enAwaﬁ) )

1
aB — (W;LVAI{)\ + WHAANV) X ﬁ
= —=w ueaﬁAn)\wﬁ)\ + —w ,/AK)\GI{/\WQB + —wﬁ)\w’{/\A Veaﬂ,
V3! V3l V3 H
b2p2 _ (b . p)2 1
- \/—szwweaﬁ + T]ﬂwuuwaﬁ + %
Pr2—(b-p) po-) 1

V3p? el /3

V22— (b-p)? 0w 1
"= (b-p) poo )+ 0, M.
3

Ve e

A,Lweaﬁa

wwﬁaﬁ + + Auy0a5. (E056)

= Vir

2
PO—0w) FT(wA-b)rA 5= (b-p) 0
LUK e \/§p2

wWap +

) POt (wwjm + wmf}w) X

LV, KA (eaﬁwﬁ)\ + OHAMO‘B) ’

1

V3
1 N K 1 S K 1 3 K

= ﬁwWZN,\GQBW At ﬁwWZH,\H ’\waﬂ + ﬁw,{)\Eweaﬁw A
2 1 -~

=—(b-p)wbis + —=2,.,00.5. E.0.57
\/5( p) wap \/§ wap ( )

—0w) 2
P(O [ )H(wE)HA 3= —= (b . p) QMVWQB +

AN f1ed \/§

1

\/ge,wiaﬁ.

PN (Qaﬁwn)\ + eﬁAwaﬁ) 7

1 —bw)k \- S 1
H(AZ) P(O bw) Apcﬁ == (AMUE/{)\ + AH)\E/,LV> X %
~ 1 -~ 1 ~
AuygaBEnAWHA + _Zuu‘gaﬂAn)\W"{)\ + _3An)\9“)\2;wwa67

3 V3 V3

b-p)’ < b*p* — (b-p)’ ¢
(b : p) Auyeaﬁ + uZuyeaﬁ + #Euywaﬁ. (E058)

V3p?
Pp?—(b-p)° <

o)~ 2 b-p)? -
P(O 0 )H(AE)RA,QB - (b . p) @uVAaﬂ + ﬂ@w]gaﬁ + \/§p2 WpuEaﬂ'

UV RA \/g \/§p2

Agora, apresentaremos as contragoes que envolvem II

1

Sl g

(1)

AN
0 O = L (0,80 4 00 + 0+ 0T ) x5 (0755 + 02,55 + 07,50, + 02,5
8 9 BKAUN UANAVER VKU VAH UK 9 « B « Jo] B « B a >

UVRAT T
(E.0.59)
assim,

O oA

v RAT a8

((Zmeliaiy,\i)\g + euﬁi,,)ﬂ/\aiﬂg + leil,)\(gﬁgi)\a + Hwi,,ﬁ*ﬁi“a

N | —

+0w£i,u)\6,{ai)\ﬁ + el/ni,u)\eAaiﬁ,B + euni,u)\eﬁ,ﬂi)\a + eyniu)\e)\ﬁiﬁa) )
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observe que
iu)\i)\ﬁ = (bup)\ + b)\pu) (bﬁpA + b)\pﬁ) )
= p’bubs + (b~ p) (bups + bsp,) + U°pups,
= pzAVﬁ + (b : p) EV,B + b2p2wl/ﬂ7

entao
am o Z L7 (ap b-p)S,s + b2p? b,ps — (b- bop, — (b-
ponlag = 5 |Oua (P7As + (- p) B + bp7ws | + (bups — (b~ p) wip) (baps = (b P) wia)

+ 0,3 <p2Am +(b-p)Sha + b2p2wm> + (bupa — (b p) wap) (bgpy — (b p) wys)
+ 00 (pzAuﬂ +(b-p) iuﬂ + b2p2wuﬂ) + (bvpﬁ —(b-p) Wyg) (bapu —(b-p) Wua)
+0V/3 (pQAua + (b : p) i;wc + b2p2wuo¢> + (b,,pa - (b : p) WOW) (bﬁpu - (b : p) Wuﬁ)} )

e 1 . 5
) I = 3 [em (pQAuﬁ +(b-p) Ly + b2p2wuﬁ> + 0,s (pz/\m + (b p) Lo + prZwm>
+ 0, <p2Aua +(b-p) Spa + bgPQ‘*’uQ) + 0o (pZAuﬁ +(b-p) S + 52292%5)

+ (bupp — (b p) wus) (bapy — (b P) wWya) + (bupa — (b p) way) (bspy, — (b-p) wip)

+ (bups — (b p) wup) (bapu — (b P) Wpa) + (bupa — (b p) Waw) (bapu — (b p) wps)]

desenvolvendo e agrupando, resulta

1) W = 2 [0 (s + Wshon + as + wophisa)
—(b-p) <Wuail/6 + WupSva + Wra s + wv,Biw)
+4(b-p)° Wuwas + 0 Opalhus + 0usMa + 0o + o5 u0)
+ (awi,,ﬁ 0,550 + OaSs + eyﬁiw>
+0°p” (Wpabyp + Wusboa + Wrabyus + wipba)]

identificamos

™ = %pgﬁﬁtﬁw—(b D42 (b ) P 40 T s+ (0 D) T g 0 P
(E.0.60)

) IO = % (BurSr + S + s + 025 x% (0505 + 07\ + 055 A% + 07 50",

(E.0.61)

O @ _

purv, kAT a8

S (07D 5 + 02 A5 + 050  + 050"

| —

 OunSn (0705 + 00 + 0750 + 02507 |
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O e _

PN o <9,uoziu)\A)\ﬁ + eunAﬁﬁiw\e)\a + euﬁiy,\A/\a + GMHARQEV)\Q)\/B

DO | —

+01/ozi,u)\A/\,3 + eunAHﬂiy)\e/\a + QV,BEMAA)\a + eunAnaiu)\e/\,B) ;

calculando a contracio X,4A%s,

S0 s = (bypa + bap,) b g,
- (b : p) bubﬁ + bzpl/bﬁa
=(-p)As+ begpy,

. 1 K 1 b - p
0T = 5 (B (00) 0 202) + (s = P00, ) 1 = - 9) )
2 (b-p)
+ 0#5 ((b ’ p) Al/a + b bapz/) + A,ua - Tbapu (pybﬁ - (b . p) wyﬁ)
2 (b-p)
+ 0ua ((b “p) A+ bﬁpu) + | Aup — P2 bspy (puba —(b-p) W;La)

b .
+@Mwmmw+%w@+@m—%§%@)mm—wmwm,

desenvolvendo e agrupando os termos convenientemente, temos

(1) r@)kA
H,uu,n)\H,aﬁ -

[(Brathvs + OusAva + Ovalys + Ouphya) (0 - p)
+ b (01abspy + 0u8baps + Ouabspy + 0usbapy)
+ (Auabﬁpy + A;L,Bbozpu + Al/abﬁpu + Ayﬁbapu)

—(b-p) (wuaAVB + wpsAva + Woalys + wVﬁAua)

N —

4(b-p) 2(b-p)° ¢
- P2 Aaﬁw/wp2+ 2 Eaﬁwuu )
= (1) (2)kA ~(2) 2rr(1-b) | & 1 = (wA—a) (b - p)2 ~
Hw/,n)\H,a,B = (b ’ p) Huu,a,8+b Huu,aﬁ—i_zﬂl"/\aﬁ_é (b ’ p) Huu,a/j -2 (b ' p) w,uVAOéﬁ—i_Tww/Eaﬂ'
(E.0.62)
S2) (1A =@ o),y o L = (wh—a) (b-p)* <
I, s = (b-p) L, apt0 H”V7QB+AWZOC/3—§ (b-p) I, 0s —2 (b-p) AMVWOC/B+TZMVW@B‘
NN KAY-
= (1) mOD)eA L = S S S <9"52 +0 EOﬁ)
H/(U/),Ii)\]:[,(aﬁ) = 5 <9uf€2u)\ + QMAZW-; + Qumzldx + 0]/)\£MK)> X \/g , (E063)
1 N ~ . 1 ~ ~ ~
— 9,5, (ea SN LS, ) 0,5, <9a SN 4 gAS, ) ,
5 0m B (Pas 8) T 500 Zun las 8

2 9 2 9 1 ~ -~ 2 ~
= —p°A, 05— —(b- W bas + —=2 0208 — —= (b p) W as,
\/gp wrap \/3( p) urap \/g W B \/g( p) /t B

~r(wA—a 2 2 2 2 ~
= ﬁpz s~ 7 (b-p)” wubap + EPZAMVQ(%‘ ~ 7 (b p) W Xap-

(E.0.64)
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T(02) F(D)kA 1 7 (wA—a 2 2 -
H;(w,/zAH(ai? ﬁpzﬂfw,aﬁ ) - ﬁ (b ) p)2 gul/waﬁ + ﬁPQHMVAaB - ﬁ (b ) p) Euuwaﬁ'

_ oAk 1 . . . . 0,5 + 0" A,
H;(Lll/),n)\]:[fzg) A = 5 <9u52y)\ + 9;1,)\21/14 + eynzu)\ + 61/)\2;1,/{> X ( i \/§ B> s (E065)
1 - 1 .
= ﬁeﬂnzm (BasA™ + 0" N o) + ﬁewzw (asA™ + 0" N og)
aw fevs _ Ly s yeyg L 5 AR Ly 095 ,A L0758, A
uv, kAT a8 - ﬁ pESUA af + ﬁ VAR aﬁ+ ﬁ LK VA aﬁ+ ﬁ VA prtrafs
~ ~ (OA) KA 2
D108 = S0+ (0-1) s = = ) B
_(b-p)° IS 2
\/g 2 Z#I/Qaﬂ + \/§Z#I,Aag — ﬁ (b . p) W#Z,Aag, (E066)
. = v2p: — (b-p)’ - 2
1 OA) KA b p
Hiz/),n)\n,(aﬂ) = T]ﬂzuueaﬁ + ﬁ (b ’ p) A,uueaﬁ
2 1 - 2
~ 5 (b p) V*w,bas + %zwAaﬂ ~ 5 (b p)wwhas. (E.0.67)
0N [0 — b2p2_<b'p)9 S 2 (b ) O Aus—— (b ) %0 ASse (b p) A
oSN T aﬂ+\/—( P) O Nap— \/—( p) uvwaﬁ+\/§ jwXaB— \/—( P) Mywwa
T, G0 = (HMZ A0S + B + 03T ) X Aagh™, (E.0.68)

= Q;LHEI/AAR Aaﬁ + QI/AE/JHA Aaﬁ;

note que as contracoes sao analogas a primeira parte das anteriores,

0 AN _ v’p? — (b- p)Qi A 2
= T 5  “wilapg + 2 (b : p) A;WA&,B —2 (b P) b w;u/Aaﬁa

pU,RAT 08 pQ
v*p? — (b- p) AA
p—22 Aap +2(b-p)TNY —2(0- p) BPwwAag. (E.0.69)
b2p? — (b p)?
AA KA p p (AA
H,I(J,l/ H)))\H( )ﬁ TA/—LVEQB + 2 (b p) Huu 04),3 2 (b ' p) b2Auywaﬁ.
w a)kA 1 — - - d
H;(Alu) /{)\H( A - 5 (e,unzu)\ + H}LAEV}C + eunz,u)\ + 91/)\2;“;) X (WHQAAﬁ + WAQAHB + wﬁgA)\a + w)\gAHa) ,
(E.0.70)
] r7(wA—a)k 1 = ~
M)l =5 [OurEn (@b + W 30%) + O (0o + wpA%)

—i—@,miu)\ (w)‘aA"ﬁ + w)‘/gAF"a) + 91,/\2“,{ (WHaA)\,B + wﬁﬁA)‘a):| ,
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8™ = 0,50 (W a5 + 0 A% ) + 0,3 Dn (w5 ah s + W A%,

(1)
Hw/,fe/\
podemos desenvolver os produtos e usar os resultados ja calculados para escrever
- T(wA—a)k & 2(b- ? &
0,3 = 20,5, - 200 5 (E071)
2
~(wA—a) 75 (1)krA & Q(bp> S
A VT = 25, Aag — Tzwwaﬁ.
2 w K 1 N S N S K K
TSN T 5 (9,mzm 0,050 + O, + emzw) X (WapA™ + W™ Aag)
1 . . . .
= 5 <9,u/§21//\ + e,u)\zun + HVHZH)\ + QVAZ;U@) WQBAE/\a
= ep/{iquaﬁAﬁ/\ + ey)\i,unwa,ﬁAM\a
_ (@LKEMAHA v emiwm*) Wass
2% 2 (b p)2 S
=b"Y,wap +2 (b p) ANpwas —2(b- p) b*wpwas — Y Wag,
p
b2p2 — (b ) p>2 S 0—w
= Suwkas 12 (b-p) Apwwas — 2(b-p) PP 4. (E.0.72)
S (WA=D) 7 (1)kA b2p2 - (b P)2 ad 0—w
wa,n)\ )H,(a)ﬁ = p—gwﬂllzaﬁ +2 (b ' p) W,UVAOé,B -2 (b ’ p) bQP;SZ/,a,B)‘
- oSk 1 - - - - - s
HE}V),H)\H,(@BE) A - 5 (9/,LI€ZZ/)\ + elu)\zzzn + ellnzy)\ + eu)\z,un) X (wa,ﬁz A +w AEa,B) )
1

<9/miy,\ + H,Mim + QVHEMA + QVAi;m) waﬁim,

euniuAiHA + 01/)\2;1/@25)\> Wag,

/N DO

= 20" Awas — 2(b-p)* PO %) (E.0.73)
]':'[,l(;.)/i)AfI,((i)ﬁRA - 2]9200#1,/\(,0&5 —2 (b ) p)2 P;Eg;u/;’)
(E.0.74)

. AT 1 . _ _ _ _ _
1 0™ = 5 (e,sz + 0,0 + O S + QVAZ,M> x (Aaﬁz“A n A“Azaﬁ) ,
_ (e,mimiw + QMEMEM) Aus + (Q,MiM/wA + QWSMA“) Sass

ﬁflllf)ﬁAﬂ,(éé\ﬁz)NA - 2p2AlWA0lﬁ —2 (b ’ p)2 wlwAaﬁ
b? 2 b . 2 _ ~ ~ )
' ( : p2< p) ) E#VEQ/B 2 (b ’ p) A/“/Zaﬂ —2 (b ’ p) bQWMVZa6>
(wA—a)

ﬁfllu),ﬁ)\ﬁ,(;\?)NA = 2p2ﬁfﬁfxa)ﬁ -2 (b ’ p)2 wMVAOC/B + [62])2 - (b ’ p)Z] ﬁ,ul/,aﬁ
+2(0-p) MwSap — 2 (0 p) V*wpXas.
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ﬁ(AE) H(oa,);)\ - 2 2H(AA) (b ’ p)2 Auuwaﬁ + [b2p2 - (b : p) } H(WA R

UV, KA uv,a8 uv,af

+2(0-p) Zhap — 2 (0 p) 02 Was.

(2)
Para HW aﬁ
1) G2 = (mAVA + Opr A + O + Oy D) X (maMﬁ T OGN 075N + B 5A)
(E.0.75)
- . 1
(2T = 2 (12005 + V03 ha + B0radus + 0050

+ QumAnﬁAuAexa + e,umAHocAV)\QA,B + HVHAROCAMAQAB + HVEAHBAMAHAOC) ;

~ 9\ 1
H/(jj),ﬁ)\n,(i)ﬁ Y= §b2 (euaAVﬁ + QMBAZ/Q + ez/aAuﬁ + HVﬁAua)

1
+ 5 (QMHARBAVAQ)\OZ + Q;AHAH&AV)\QAB + HVHARO&A[J)\QA6 + QVRAHBA/L/\H)\a) ;

) (I = —52 (Opatvs + Ouphua + Ovalus + OspAua)
+ 20 Ay — (bp D) (AuwSas + AapS
+ % (Waalvs + Wuphva + Wialus + wishua),
0® 0@ =pn® 4200, - (bpf S, (bépgfﬁﬁ%a). (E.0.76)
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APENDICE

Calculo do propagador com violacao da
simetria de Lorentz

Aqui apresentaremos os passos omitidos no calculo do propagador

ONV@/B alp(z/)aﬂ + a2P(V)aB + a3p(u aﬂ) + G4P/E?/ aeﬁw) + CZ5H( 1/)043 + GGH( V)QB +a HL c)uﬂ + BHELHV/,257
(F.0.1)
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