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“In science, there are no shortcuts to truth.”

Carl Sagan.



Resumo

Navegar por ambientes desconhecidos e buscar por recursos, como comida e agua, €
fundamental para a sobrevivéncia de muitos animais, incluindo os seres humanos. Por
quase um século, pesquisas em neurociéncia comportamental e cognitiva apoiam a
existéncia dos mapas cognitivos, sendo usados por animais para navegar no espaco.
Mapas cognitivos permitem que animais realizem tarefas complexas, incluindo a aquisicao
de um mapa global a partir de ambientes distintos uma vez que as conexdes entre
eles sdo estabelecidas. Ademais, pesquisas apontam que a constru¢cao de um mapa
cognitivo prévio a participacdo em tarefas recompensadas pode acelerar o processo de
aprendizado, conforme evidenciado por experimentos de aprendizado latente. No entanto,
os fatores especificos que contribuem para as diferencas observadas na velocidade de
aprendizado, influenciadas por projetos experimentais e estratégias de exploragdo no
aprendizado latente, permanecem uma questao em aberto. Esta tese de doutorado
prop6e novas abordagens computacionais inspiradas em principios biolégicos para a
construgdo de mapas espaciais que facilitem a navegacao e aprendizado espacial. O
algoritmo de Localizacdo e Mapeamento Simultaneos (SLAM), inspirado no processo de
navegacao no cérebro de roedores, conhecido como RatSLAM, foi ampliado através do
desenvolvimento de uma nova abordagem de fusédo de estruturas para lidar com o desafio
do mapeamento em multiplas sessdes. O RatSLAM também é integrado como um
algoritmo de aprendizado de representacédo de estado dentro do framework CoBeL-RL,
um framework de aprendizado por reforgo construido com base em descobertas recentes
em neurociéncia, permitindo que agentes aprendam tarefas espaciais em ambientes
desconhecidos. Ao utilizar esse framework, experimentos de aprendizado latente séo
investigados para obter percepcdes sobre o impacto dos diferentes projetos experimentais
e estratégias de exploragéo na velocidade de aprendizado. Os resultados evidenciam o
éxito do RatSLAM no mapeamento em multiplas sessdes com o uso de conjuntos de
dados reais, bem como a habilidade de agentes virtuais de aprender tarefas espaciais em
ambientes desconhecidos. Além disso, evidencia-se que os agentes desenvolvem
Representacdes Sucessoras singulares, dependendo dos projetos experimentais
especificos, 0 que oferece uma explicacao potencial para as variagoes na velocidade do
aprendizado nos experimentos de aprendizado latente. No geral, esta tese contribui para
a robética e neurociéncia computacional aprofundando a compreensado dos processos
cognitivos envolvidos na navegacao espacial e fornecendo percepcdes praticos para o
desenvolvimento de sistemas robdticos mais eficazes e modelos computacionais
inspirados em principios biologicos.

Palavras-chave: Navegacao Espacial, Mapas Cognitivos, Aprendizado Latente,
Representacdes Sucessoras, RatSLAM.



Abstract

Navigating unfamiliar spaces and searching for resources, such as food and water, is
fundamental for survival in many animals, including humans. For nearly a century,
behavioral and cognitive neuroscience research has supported the existence of cognitive
maps, which animals employ to navigate spatially. Cognitive maps enable animals to
perform complex tasks, including acquiring a global map from distinct contexts once
connections are established. Furthermore, studies have revealed that building a cognitive
map before engaging in reward-based tasks can enhance learning speed, as evidenced by
latent learning experiences. However, the specific factors contributing to the observed
differences in learning speed, as influenced by experimental design and exploration
strategies in latent learning, remain an open question. This doctoral thesis proposes novel
computational approaches inspired by biological principles for building spatial maps to
facilitate spatial navigation and learning. The Simultaneous Localization and Mapping
(SLAM) algorithm, inspired by the navigation process in rodent brains, known as RatSLAM,
has been extended by developing a novel structure merge approach to address the
challenge of multisession mapping. RatSLAM is also integrated as a state representation
learning algorithm within the CoBeL-RL framework, a reinforcement learning framework
built on recent neuroscience findings, enabling agents to learn spatial tasks in unknown
environments. By utilizing this framework, latent learning experiments are investigated to
gain insights into the impact of different experimental designs and exploration strategies
on learning speed. The results demonstrate RatSLAM’s successful performance in
multisession mapping using real-world datasets and the ability of virtual agents to learn
spatial tasks in unfamiliar environments. Additionally, it is shown that agents acquire
distinct Successor Representations based on the specific experimental designs, providing
a potential explanation for variations in learning speed for latent learning experiments.
Overall, this thesis contributes to robotics and computational neuroscience by deepening
our understanding of the cognitive processes involved in spatial navigation and providing
practical insights for developing more effective robotic systems and computational models
inspired by biological principles.

Keywords: Spatial Navigation, Cognitive Maps, Latent Learning, Successor Representation,
RatSLAM.
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1 Introduction

Navigating unfamiliar spaces and searching for resources such as food and
water is essential for many animals’ survival, including humans. Although the specific
mechanisms underlying spatial navigation are complex and unclear, evidence suggests
that the process involves two critical components: mapping the environment through
exploration and efficiently navigating on that map towards specific goals (POULTER;
HARTLEY; LEVER, 2018; HILLS et al., 2015). Nevertheless, how animals navigate has
been a recurring research question.

In the mapping phase, spatial-related cells in the hippocampal formation (O’KEEFE;
NADEL, 1978; TAUBE; MULLER; RANCK, 1990; HAFTING et al., 2005; BEHRENS et al.,
2018) integrate animals’ self-motion estimation and environmental cues information (JIN et
al., 2020; POULTER; HARTLEY; LEVER, 2018), allowing them to construct a cognitive
map of the space (TOLMAN, 1948). This cognitive map serves as one of the foundations
for efficient navigation, in which animals can learn and adopt distinct strategies to navigate
familiar and unfamiliar places (JIN et al., 2020). One could use stimulus-response (S-R)
association, where specific actions are executed in response to stimuli, or use spatial
relationships between landmarks and compute navigation paths internally with the
cognitive map.

1.1 Cognitive Maps and Spatial Cells

Behavioral experiments on latent learning conducted by Tolman and Honzik
(TOLMAN; HONZIK, 1930; TOLMAN, 1948) provided evidence that animals create an
internal representation of their environment, the cognitive map, during maze exploration. In
this type of learning, groups of animals are pre-exposed to an empty maze for a specific
period or until they reach non-rewarded goals. Consequently, even without explicit rewards,
rats with prior maze familiarization could locate food more effectively, avoiding dead ends,
computing mental detours, and finding environmental shortcuts, outperforming rats with no
previous experience but with food available from the start.

The discovery of specific types of brain cells that activate for spatial features of the
environment plays a crucial role in spatial navigation and has supported the cognitive map
theory. O’Keefe and Dostrovsky discovered “place cells” in the hippocampus that activate
when an animal is located in a circumscribed region of space, forming a place field with
intense activity at the center of the animal’s location (O’KEEFE; NADEL, 1978) (Fig. 1). In
addition, Taube and collaborators reported “head direction cells” in several brain regions
that activate when the animal’s head is rotated in a distinct direction (TAUBE; MULLER,;
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Figure 1 — Spatial related cells found in mammals/rodents brain

Place Cell Grid Cell Head Direction Cell
120° 60°
A
240° 300°
(O’keefe & Nadel 1978) (Hafting et al., 2005) (Taube et al. 1990)

Source: Adapted from (BEHRENS et al., 2018)

RANCK, 1990). Furthermore, grid cells discovered by Hafting et al. (HAFTING et al., 2005)
in the entorhinal cortex are activated when the animal’s location aligns with a vertex of a
hexagonal grid overlaid on the environment, known as a grid field. While pose cells seem
to represent an animal’s position in space, the periodic activation pattern of grid cells
allows for the formation of highly efficient spatial representations. It is believed to be a
metric for spatial calculations (HAFTING et al., 2005).

In addition, researches with grid cells have shown that cognitive maps can be
adapted and changed to suit complex mapping scenarios, such as building global maps
from initially distinct environments. A study by (CARPENTER et al., 2015) demonstrated
that initial exposure of rats to multi-compartment environments resulted in grid fields
dominated by local compartments. However, with increasing experience, the discontinuities
in the grid fields between the compartments gradually reduced, forming a continuous
representation spanning both compartments. In further research by (WERNLE et al.,
2018), rats mapped two distinct environments separated by a wall, and the grid field
formed local representations of each compartment. Removing the wall rapidly adjusted the
grid field in the merged location, establishing a coherent global representation of the
environment. These findings suggest that grid cells modify their firing patterns to produce
a global model of the environment.

1.2 Learning to Navigate with Cognitive Maps

Studies on cognitive maps go beyond their acquisition and explore their role in
facilitating efficient spatial navigation and learning. Recent research has investigated the
idea of predictive maps, which are inherent in cognitive maps and capture the spatial
relationships within an environment (STACHENFELD; BOTVINICK; GERSHMAN, 2017; de
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Cothi et al., 2022; BRUNEC; MOMENNEJAD, 2022). Place cells in the brain encode not
only an animal’s current location but also future locations the animal anticipates visiting
from its current location. These relationships are learned based on environmental features
during exploration, independently of explicit motivations such as rewards. Subsequently,
the predictive relationships of places and future rewards presented in the environment can
align to build navigation trajectories, matching Tolman’s hypothesis of cognitive maps in
latent learning experiments.

Nevertheless, how the predictive maps are learned during the exploration can
significantly impact their subsequent use. In a study by Karn e Jr. (1946), they investigated
how different types of pre-exposure to a maze affected rats’ ability to find subsequent
rewards in latent learning. The rats were pre-exposed through diverse experiment designs
that included manipulations with and without exploration. Results indicated that the
latent learning experiment closely aligned with the rewarded task, i.e., stopping the
animals’ exploration when finding the empty goal compartment, was more effective in
improving learning performance. Furthermore, pre-exposure with exploratory experiences
substantially affected rewarded task performance, outperforming groups of animals that
did not explore the environment. These findings emphasize the crucial role of exploration
during cognitive map acquisition in facilitating navigation toward a goal. However, it is still
necessary to elucidate how these different experimental designs affect learning. Our
hypothesis asserts that different exploratory designs led to different representations
of predictive maps during unrewarded periods, thus impacting subsequent learning
performance.

1.3 Computational Frameworks

The study of spatial navigation in animals has enhanced the field’s understanding
and also driven the development of computational approaches to solve engineering
challenges and advance further research through computational models. One notable
application is the adoption of neuro-inspired approaches that address the Simultaneous
Localization and Mapping (SLAM) problem in mobile robots (ZENO; PATEL; SOBH, 2016;
TANG; YAN; TAN, 2018; YU et al., 2019). SLAM involves an agent constructing a map
while navigating an unknown environment and determining its position on the map
(DURRANT-WHYTE; BAILEY, 2006). RatSLAM, a neuro-inspired solution to solve SLAM,
is based on the underlying spatial navigation mechanism in the rodent’s brain (MILFORD;
WYETH; PRASSER, 2004; MILFORD; WILES; WYETH, 2010; BALL et al., 2013). It builds
experience maps by integrating visual and speed information into a conjunctive grid and
head direction cells named Pose Cell Networks. However, early versions of RatSLAM
faced challenges in handling the complexities of mapping tasks involving multiple sessions.

Reinforcement Learning (RL) has also played a crucial role in investigating how
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biological agents learn to navigate in space (TESSEREAU et al., 2021; HE et al., 2022;
DIEKMANN et al., 2023; de Cothi et al., 2022). This approach involves an agent interacting
with an environment, observing states, taking actions, and receiving feedback in the form
of rewards or punishments. Through trial and error, the agent learns to make decisions
that maximize long-term rewards by adjusting its actions based on past experiences and
observed states (SUTTON; BARTO, 2018).

The RL states of the environment are crucial for an agent’s decision-making and
learning optimal behavior by providing essential contextual information. However, dealing
with high-dimensional observations and the absence of compact state representations can
introduce complexity. To address this, state representation learning (SRL) is commonly
used as a preliminary step (LESORT et al., 2018). SRL aims to discover informative and
concise state representations. In spatial navigation, SRL can be employed through initial
task exploration (MERCKLING et al., 2022).

A central RL algorithm is the Successor Representation (SR) vastly employed in
the predictive map theory (DAYAN, 1993; RUSSEK et al., 2017; DUCAROUGE; SIGAUD,
2017; de Cothi et al., 2022). SR enables the independent learning of a predictive map of
places (or states) and the potential reward within the environment. In the SR algorithm, RL
states play a vital role as they serve as the foundation for representing the environment
and capturing its temporal dynamics. By observing state transitions, the algorithm learns
how the environment evolves and how the agent’s actions influence these transitions.
Notably, the original report of SR demonstrated its capacity to handle latent learning
simulations (DAYAN, 1993).

Recently, Diekmann et al. (2023) have developed the closed-loop simulator for
complex behavior and learning based on RL and deep neural networks (CoBeL-RL). The
CoBeL-RL includes crucial mechanisms for neuroscientific plausibilities, such as replay
and complex 3D environments. The framework is a prominent research tool, providing a
range of RL agents, including an SR implementation and tools to monitor and analyze
agent behavior. A notable feature of the framework is its flexibility, allowing modification of
its modules to incorporate new functionalities. CoBelL-RL has demonstrated a latent
learning effect in environments resembling those studied by Blodgett (1929).

Incorporating SRL methods can enhance CoBeL-RL. In spatial navigation, SLAM
solutions such as RatSLAM can handle high-dimensional information such as images and
velocities and transform them into spatially informative states such as position and
orientation while exploring unknown environments. This dimensionality reduction can
increase the efficiency of policy learning. By incorporating these capabilities, CoBelL-RL
gains the ability to examine new paradigms that balance autonomous exploration and
learning, such as artificial curiosity (PATHAK et al., 2017).
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1.4 Obijectives and Contributions

This work proposes a suite of biologically inspired approaches to building spatial
maps for spatial navigation and learning. It also allows for building theoretical and
empirical bases that can be explored for robotics and behavioral neuroscience applications.
Specifically, we contribute to the following:

* Inspired by the biological mechanisms presented in (CARPENTER et al., 2015;
WERNLE et al., 2018), we expand the RatSLAM in achieving mapping across
multiple sessions, allowing virtual or real robots to build maps incrementally with
RatSLAM (MENEZES et al., 2023);

» A novel approach to automatically tuning RatSLAM parameters by optimization
processes (MENEZES et al., 2020; GOMES et al., 2022).

« Extend the capabilities of CoBeL-RL (DIEKMANN et al., 2023) by integrating
RatSLAM as an SRL to enable automatic mapping for unknown environments;

« Building on the proposed combination of CoBeL-RL and RatSLAM, we model latent
learning experiments and investigate how distinct exploration approaches during
latent learning accelerate the learning of reward locations, as observed in rats.
(KARN; JR., 1946).

Combining CoBeL-RLs learning mechanisms with RatSLAM’s mapping abilities
has significant implications for biological studies, particularly spatial navigation. This
integration enables the design of realistic simulations that accurately model the learning
processes involved in unfamiliar environments. Additionally, it can facilitate operating
state-dependent RL algorithms such as the SR. By leveraging pre-exposure designs in
latent learning, this research contributes to a deeper understanding of how agents
navigate effectively in space. Overall, this work advances the fields of computational
neuroscience and robotics by showcasing the potential of biologically-inspired approaches
in map-building and learning.

This thesis is structured into the following chapters: Chapter 2 delves into the
theoretical foundations needed for this study. Chapter 3 provides an overview of the
relevant works related to this thesis. In Chapter 4, the methodology and results of
RatSLAM'’s extension to handle multisession mapping are presented. Chapter 5 introduces
the framework that combines RatSLAM and the CoBeL-RL for mapping and learning in
unknown environments. It also investigates different pre-exposure designs and exploration
strategies in latent learning. Finally, Chapter 6 presents the conclusions drawn from this
thesis.
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2 Theoretical Foundation

This Chapter provides an overview of the theoretical foundations supporting this
work. Firstly, we provide an overview of Simultaneous Localization and Mapping (SLAM) in
mobile robotics. Next, we introduce the RatSLAM algorithm, discussing the key concepts
and principles. Thereafter, we delve into Reinforcement Learning and explore related
algorithms such as Model-free, Model-based, and Successor Representation. Lastly, we
discuss the CoBelL-RL, a closed-loop simulator of complex behavior and learning,
highlighting the main components and overall functionality.

2.1 SLAM

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in
robotics and artificial intelligence that addresses the challenge of a robot or a mobile
platform simultaneously mapping an unknown environment while estimating its position
within that map (DURRANT-WHYTE; BAILEY, 2006; THRUN, 2008). To address this
problem robustly, SLAM involves utilizing sensor measurements from various sources, such
as odometry, laser range finders, or cameras (ZAFFAR et al., 2018). This process entails
solving a sophisticated optimization problem incorporating these sensor measurements,
motion models, and probabilistic estimation techniques (THRUN, 2008). Moreover, SLAM
algorithms typically employ a combination of filtering, smoothing, or optimization methods
to iteratively refine both the map and the robot’s pose estimate, ensuring accuracy and
consistency (MONTEMERLO et al., 2003; DURRANT-WHYTE; BAILEY, 2006; GRISETTI,
STACHNISS; BURGARD, 2007).

The SLAM can be formally described in probabilistic terms (THRUN, 2008). When
a robot is on a ground surface, its position at time ¢ is represented by two-dimensional
coordinates in the plane z; and an orientation value. The set of coordinates is defined as:

X1 =20, T1,T2, ..., %7 (2.1)

where T represents a terminal time, and the initial location x, is unknown.

The odometry data, u,, provides information about the robot’s motion between time
t — 1 and ¢. This data sequence is represented as:

UT:U,O,UhUQ,...,UT. (22)

Due to the accumulation of noisy measurements, odometry information becomes
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increasingly inaccurate over time. As a result, relying solely on odometry data is
inadequate for accurately reconstructing the past trajectory X from the initial location .

The environment map represented as m = mq, ms, ..., my is assumed to be
time-invariant, modeling a static environment. If we assume the robot takes measurements
of features in m at each time point, the relationship between these measurements and the
robot’s pose z can be expressed as:

A1 = 20,21, 22, -+, 2T (2.3)

From the previous definitions, SLAM aims to recover m and X from the odometry
data and environment measurements. Two primary forms of the SLAM problem are
distinguished: the full SLAM problem and the online SLAM problem. The full SLAM
problem involves calculating the probability of the robot’s pose throughout the entire path,
including the map.

p(XT,m|ZT,UT) (24)

On the other hand, the online SLAM algorithms recover the current robot location
rather than the entire path. The online form is defined as:

p(xbm‘ZT’UT) (25)

SLAM algorithms for online data processing are usually incremental and analyze
one data flow at a time (THRUN, 2008). Moreover, full and online SLAM algorithms employ
filtering or optimization techniques to update the distribution as new data becomes
available continuously.

2.2 RatSLAM

Milford and collaborators developed RatSLAM in 2004 as a localization and
mapping solution for mobile robots, utilizing a vision system as the primary sensor input
(MILFORD; WYETH; PRASSER, 2004). An updated architecture of RatSLAM, depicted in
Figure 2, has been proposed by Ball et al. (BALL et al., 2013). The architecture consists
of five modules to be detailed subsequently, together with the influence of RatSLAM
parameters on each module.

» The Robot Vision System is responsible for capturing images and transmitting
them to other modules.

» The Self Motion Cues module estimates translational and angular velocities based
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on robot odometry. This information is then forwarded to the Pose Cell Network and
Experience Map. Additionally, visual odometry can be computed using the images
from the Robot Vision System (Fig. 2, dashed line).

« The Pose Cells Network consists of a three-dimensional Continuous Attractor
Network (CAN) comprising units connected by excitatory and inhibitory connections.
Each cell within the Pose Cell Network represents the robot’s position (z,y) and
orientation 6.

» The Local View Cells maintain a list of view scenes, referred to as templates. A new
template is created based on whether the scene received from the Robot Vision
System is novel. An association between the template and the activity in the Pose
Cells Network is learned upon template creation.

» The Experience Map is a structured graph with Cartesian properties that serves as
a topological-metric map representation of the environment.

Figure 2 — RatSLAM architecture.

Self Motion Cues

Y
|RobotVision System| |PoseCeIIs Network}—>| Experience Map |

Local View Cells

Source: Designed by the author and adapted from (MENEZES et al., 2023)

2.2.1 Pose Cells Network

The Pose Cells Network (PCN), denoted as P, is a three-dimensional continuous
attractor network (CAN) that represents the robot’s position (2, ") and orientation 6 in 2D
space (Fig. 3). The PCN units link through excitatory and inhibitory connections, extending
across all six PCN faces (red arrows in Fig. 3). This feature enables the network to operate
beyond its fixed size limitations, virtually representing environments larger than the PCN
can directly encode. Furthermore, each cell within the PCN has an associated value that
reflects its activity on the network.

Local excitatory connections enhance the activity of neighboring cells within the
PCN. On the other hand, global inhibitory connections suppress the activity of distant cells
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Figure 3 — Interconnections among the components of RatSLAM.
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or those that exhibit low levels of activity within the network. This dynamic is described by
the distribution ¢ (MILFORD; WILES; WYETH, 2010):

€abec = e (@) [R5 o= [KGTE _ o—(a?Hb%) [k o =2 k! (2.6)
where k, and k, are the variance constants for place and direction, respectively. Additionally,
the parameters a, b, and ¢ represent the distances between the coordinates of two cells,
taking into account the periodic boundary conditions of the network. The distance between
a cell with coordinates =/, 3/, and ¢ and another cell with coordinates i, j, k can be
calculated as follows (BALL et al., 2013):

a= (2" —i)(mod n,),
b= (s — j)(mod n,). 2.7)
c= (0" —k)(mod ny),

where “mod” represents the modulo operator. The parameters n,/, n,/, and ny indicate the
size of the network in terms of the number of cells along the X', Y/, and ©’ dimensions
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respectively. The change of activity in a cell is given by:

ny—1ny—lng,—1

APpyo= > > > Pjkfape—¢ (2.8)

i=0 j=0 k=0
where ¢ is the global inhibition, the final step in the network update involves constraining
the activation levels in P to non-negative values and ensuring that the total activation is
normalized to one (MILFORD; WILES; WYETH, 2010).

Over time, PCN dynamic facilitates the formation of clusters of activated cells within
the CAN, commonly referred to as “energy packets” or “activity packets” (Fig. 3, blue
cubes) (BALL et al., 2013). The center of the energy packet represents the closer
estimation of the PCN to the robot’s pose within the environment (Fig. 3, darker blue cube).
Furthermore, the energy packet’s direction changes based on odometry information.
Additionally, templates stored in LVC can inject energy into the PCN and cause the activity
packet to “jump” to a different location.

2.2.2 Local View Cells

The Local View Cells (LVC), V, build an array of templates, denoted by V;. Each
template aims to capture a unique environment representation from the Robot Vision
System data. Moreover, when creating a template, a short learning excitatory connection
establishes a link between it and the center of the dominant activity packet in the PCN
(BALL et al., 2013). Consequently, 5 links the robot’s estimated pose in PCN to the distinct
view from that location. The link is given by (MILFORD; WILES; WYETH, 2010):

bl = max(ﬂt )\V;Pm/’y/ﬂ/) (29)

y ol o 9 T y ! oy O
2,2,y ,9 4,2,y 79’

where lambda is the learning rate, and i refers to the activated template V;. Moreover,
', y, and ¢ indicate the PCN’s dominant energy package coordinate. Note that
Bfﬁy,’e, = AV, P, ¢ oOnly if there is no prior association between the template and energy
package.

When the RatSLAM detects the robot has returned to a previously visited location,
it reactivates stored templates. This process, known as loop closure, injects energy into
the PCN at specific coordinates (z/, 4/, §') associated with the learned link g and the
activated template V;:

APpyo =0 BiwyoVi (2.10)

where § is the constant that determines the influence of visual features on the estimated
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robot’s pose. When the PCN receives a constant injection of activity, its dominant energy
package shifts, resulting in a corresponding change in the representation of the robot’s
position and orientation within the network (BALL et al., 2013).

2.2.3 Experience Map

The Experience Map (EM) is a structured graph that combines the PCN activity
and LVC templates to estimate robot poses in a two-dimensional map. A experience node
in the EM is defined as a 3-tuple (BALL et al., 2013):

ei = {F;, Vi, p;} (2.11)

where p; is the robot’s pose in the experience map associated with P, and V; states,
respectively. The RatSLAM builds a new experience when both P, and V; do not closely
match with states of any existing experience. Otherwise, the experience is reactivated.

In addition, a link [; ; stores distance and temporal information between the
transition from experience. The temporal information might be suitable for path planning
from a specific experience to the desired goal. For example, Dijkstra’s algorithm can be
used to find the shortest path between two nodes (BALL et al., 2013). A link built from
experiences e; to ¢; is defined as:

lij = {Ap;;, At} (2.12)

where Ap; ; and At, ; are the distance and time interval between the two experiences,
respectively.

The EM processes described above rely mainly on the robot’s odometry information.
However, when loop closure is detected, the robot re-localizes within the map, reactivating
a prior experience. To ensure accuracy on the experiences’ pose, an algorithm iteratively
corrects odometry errors based on the reactivated node’s position. This leads to
adjustments in the poses of past experiences, which are calculated as follows:

Ny Ny
Ap; =« (Z(pj — P —Ap;;) + D (P —Pi — Apk,i)) (2.13)
j=1 k=1

where « is a correction rate constant set to 0.5, N is the number of links from experience
e; o other experiences, and NN, is the number of links from the different experiences to the
experience e;.
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2.2.4 Role of RatSLAM Parameters

The RatSLAM algorithm has various parameters that affect its mapping performance
across all its modules (Tab. 1). These parameters control template operations, including
comparison, size dimensions, and conditions for creating new templates in the Local View
module. The Pose Cells module parameters determine the dynamics and dimensions of
the network, such as values for local excitation, global inhibition, and energy injection
during loop closure. The Experience Map parameters define the number of iterations for
the graph correction algorithm.

Consequently, incorrectly adjusted parameters can cause RatSLAM to malfunction,
resulting, for example, in false loop closure detection, undesirable creation of new
experiments and templates, and excessive delay in algorithm execution.

Moreover, the Self Motion Cues module (Fig. 2) provides odometry information
obtained from the Robot Vision System. The parameters must be adjusted for visual
odometry to accurately estimate the robot’s translational and rotational velocities. However,
the setting of these parameters can be omitted if alternative sources, such as wheel
encoders, provide the odometry information.

2.3 Reinforcement learning

Reinforcement Learning (RL) is a widely recognized learning paradigm that involves
an agent learning how to maximize a numerical reward signal value while interacting with
an environment (SUTTON; BARTO, 2018). Unlike other learning approaches, RL does not
depend on explicit instructions for the agent’s actions during the interaction. Instead, it
learns through experiences, engaging in a trial-and-error process to determine the
most effective choice. This type of learning is related to what has been observed in the
neuroscience field (SUBRAMANIAN; CHITLANGIA; BATHS, 2022). The concept of RL
draws inspiration from understanding how organisms learn from their environment and
adjust their behavior accordingly. Neuroscientific studies have revealed reward-related
brain mechanisms that influence decision-making and learning processes, which aligns
with the principles of RL (SCHULTZ, 2000).

2.3.1 Elements of Reinforcement Learning

The RL setup holds formalized elements (SUTTON; BARTO, 2018). First, the
learner in this setup is called the agent, which interacts with the environment over time. As
the agent interacts, it observes a series of states that represent the current conditions of
the environment. Then, the agent can choose and conduct a particular action using
the information from the current state. The agent’s action may induce changes in the
environment, and in response, the agent receives a reward as evaluative feedback for
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Table 1 — RatSLAM Parameters

Module Parameter's Name Type
[vtrans_image_x_min,
vtrans_image_x_max,
virans_image_y_min,
virans_image_y_max]; | Integer
Visual Odometry | [vrot_image_x_min,
vrot_image_x_max,
vrot_image_y_min,
vrot_image_y_max];
camera_fov_deg;
camera_hz;
virans_scaling;
vtrans_max.
vt_panoramic Binary
vt_shift_match;
vt_step_match
[image_crop_x_min
image_crop_x_max
image_crop_y_min
image_crop_y_max]
[template_x_size,
template_y_size]
vt_match_threshold;
vt_normalization;
vt_patch_normalization.
pc_dim_xy
exp_delta_pc_threshold
pc_cell_x_size
pc_vt_inject_energy
vt_active_decay
pc_vt_restore
Experience Map exp_loops

Real

Integer
Local View Cells

Real

Integer

Pose Cells Network Real

Integer

its chosen behavior. Typically, a positive reward signal is linked to receiving positive
reinforcement, while a negative call is associated with obtaining a punishment. To model
and analyze the agent-environment interaction, the Markov Decision Process (MDP)
framework is commonly employed (Fig. 4).

Figure 4 — Agent-environment interaction in a Markov decision process.

| Agent ||
state reward action
S, R, 4
R, !
_S.. | Environment ].._
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Source: Adapted from (SUTTON; BARTO, 2018)
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In RL, the agent’s actions have consequences beyond immediate rewards. They
can influence the subsequent states of the environment, leading to a chain of connected
situations and impacting all future rewards. This sequential nature of RL allows the agent
to develop a long-term strategy by considering the future implications of its decisions.

To maximize the overall reward signal value, the agent prioritizes the accumulation
of rewards throughout an episode, which refers to the duration between the initiation of the
learning process and the achievement of a possible final state. A challenge arises when
the rewards in an episode are sparse, i.e., it will be presented only in the uncertain future,
making it difficult for the agent to acquire information about distant rewards in the long run.
For example, imagine an agent deciding between two actions while navigating a maze. If it
chooses to turn to the right, the agent immediately receives a small amount of positive
value as a reward. On the other hand, if it turns left, there is no immediate reward.
Nevertheless, after a few more actions, the final reward prize is considerably more
significant than the initial one.

RL agents can use value functions to address this challenge, which estimates the
total future reward an agent can expect to receive given a particular policy starting from a
specific state. The policy is a stochastic rule that guides the agent’s action selection based
on observed states, driving its behavior within the environment and specifying the
probability distribution of actions in different states.

Importantly, RL policies must deal with the exploration-exploitation dilemma, which
involves finding the optimal trade-off between exploring new actions and exploiting the
knowledge gained from previous actions. Examples of policies widely adopted in RL are
e-greedy and softmax

The e-greedy, policy is a simple yet effective approach where the agent selects the
action with the highest estimated value (greedy action) most of the time. However, the
agent chooses a random action with a ¢ (epsilon) probability to encourage exploration.
This randomness allows the agent to explore different actions and find more valuable
strategies. Conversely, the softmax policy, known as the Boltzmann exploration (SUTTON;
BARTO, 2018), assigns probabilities to each action based on their estimated values. The
probabilities are computed using the softmax function, which gives higher probabilities to
actions with higher values. However, unlike epsilon-greedy, softmax policy still assigns
non-zero probabilities to suboptimal actions, allowing the agent to explore them to some
extent.

Both policies aim to find a balance between exploration and exploitation. Epsilon-
greedy has a higher chance of exploiting the current best action while occasionally
exploring random actions. Softmax, on the other hand, explores actions proportionally to
their estimated values, providing a softer exploration strategy. Ultimately, RL aims to
find an optimal policy, allowing the agent to make the best decisions in each state by
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maximizing the expected long-term reward. We formalize the value function of a state V' (s)
under the policy 7 as follows:

Vi(s) = Eﬂ[i V' Ry|so = s] (2.14)

t=0

where E, represents the expected value of a random variable when the agent follows a
specific policy 7, and the variable ¢ is any time step. The v € [0, 1] is the discount factor,
impacting the ratio between immediate and future rewards in the agent’s decision-making
process. When v = 0, the agent prioritizes immediate rewards. On the other hand,
when v = 1, future rewards become more significant, motivating the agent to maximize
cumulative rewards over time and prioritize actions that yield long-term advantages. The
value for the discount factor depends on the specific problem. A lower ~ is suitable for
tasks where immediate rewards are critical, such as environments with rapid changes. On
the other hand, a higher v is appropriate for tasks involving long-term planning and
significant implications of delayed rewards.

In addition to value functions, the RL framework extends this concept to action-value
functions, also known as Q-values and denoted as @ (s, a), which incorporate the actions
taken by the decision-making agent. Q-values estimate the expected cumulative reward
that the agent can achieve by taking a specific action a from state s and subsequently
following a particular policy 7. Unlike value functions, which focus only on states, Q-values
measure the long-term potential and immediate rewards of choosing a particular action in
a given state:

Qr(s,a) = EW[Z ' Ry|so = s, a9 = a (2.15)

t=0

2.3.2 Model-free and Model-based RL

In RL, two fundamental approaches can be employed for an agent to learn a given
task. The first, model-free RL, involves learning the optimal policy directly through
a trial-and-error scheme, updating the value or action-value functions at each new
experience. Alternatively, RL can use models of the environment to predict the outcomes
of its actions and select the action that yields the best result. By leveraging an internal
model, the agent can plan over potential paths. In the second approach, known as
model-based RL, actions are chosen based on predictions made by a model. This model
anticipates the outcomes of different actions regarding future states and the corresponding
expected rewards (SUTTON; BARTO, 2018).
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Both approaches have their advantages and trade-offs, with model-free algorithms
offering fast learning but limited ability to plan in case of changes in the environment and
model-based RL providing planning capabilities but requiring an accurate model of the
environment.

Model-free RL

In model-free RL, the agent learns to make decisions and improve performance
through trial-and-error experiences. This method focuses on learning without building
an explicit model of the environment. Instead, the agent directly interacts with the
environment, obtains rewards for its actions, and adjusts its policy accordingly. Model-free
agents depend on value functions to evaluate and update the current policy over new
experiences since they measure the value of expected future rewards for the following
states and guide the agent’s decision-making process. The Bellman equation states the
decomposition of a current state value V (s;) in terms of the expected reward (r;) and the
value associated with the next state, as can be seen in:

V(s) = Elry + yrers + 7*rige +7°7i43) (2.16)
=E[r, + vV (s141)] (2.17)

One critical component of model-free RL is the capability to update the value
function as the agent gains additional experience. The value function is iteratively adjusted
using the temporal-difference (TD) learning rule. This rule involves comparing the
predicted outcomes of actions with the actual observed results and updating the value
estimates accordingly (SUTTON; BARTO, 2018):

V(s) < V(s)+a[ry + 7V (si1) — V(9)] (2.18)

where V (s) represents the value estimate for state s, r, is the reward received at time step
t, a is the learning rate, and ~ is the discount factor that balances the importance of
immediate and future rewards.

Furthermore, model-free RL can employ on-policy and off-policy methods for
learning and updating the agent’s policy. On-policy algorithms involve learning the value
function or policy based on the data collected by the agent while following its current policy.
The updates are directly based on the actions taken by the agent during its exploration. In
contrast, off-policy methods enable the agent to learn and update its value functions and
policy using data generated by a different policy. This means that the agent can leverage
experiences collected under a different exploration policy to improve learning. One notable
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example of an off-policy algorithm is Q-learning, which updates the Q-values by estimating
the maximum expected future rewards for each state-action pair. The update rule in
Q-learning involves selecting the maximum Q-value (max,Q(s;+1)) for the next state,
regardless of the action selected by the policy and taken by the agent (Eq. 2.19).

Q(sv CL) A Q(Sa a) + O‘[Tt + Vmaxa/Q(stJrla al) - Q(S> a)] (21 9)

In large state or action spaces, function approximation techniques are often used to
approximate the value function or Q-values (SUTTON; BARTO, 2018). Deep Q-Network
(DQN) is a well-known model-free RL algorithm that combines Q-learning with DNN (MNIH
et al., 2015). It leverages a neural network to approximate the Q-values. It employs an
experience replay mechanism, where past experiences. During learning, batches of
experiences are randomly sampled from the replay buffer. Furthermore, DQN employs a
form of epsilon-greedy exploration, i.e., the agent explores the environment by randomly
selecting actions. As the agent’s training progresses, it gradually shifts towards exploiting
its knowledge by selecting actions with the highest estimated Q-values.

Model-based RL

Model-based RL involves learning a model that captures the dynamics of the
environment or the underlying process controlling the agent’s interactions. This model
enables the agent to simulate different outcomes resulting from its actions, facilitating
selecting the action that maximizes the expected return. This approach is particularly
effective in simple and predictable environments. However, as the state/action space
expands, predicting each outcome becomes increasingly challenging and computationally
intractable.

The model employed in model-based RL can be stochastically designed to address
the inherent randomness and uncertainty of the real scenarios. In this scenario, the
environment may respond to actions in numerous ways, each with its probability of
occurrence and allowing the agent to make robust and adaptable decisions to the dynamic
nature of the environment. Moreover, the learned model’s accuracy significantly impacts
the model-based RLs effectiveness. If the model inaccurately represents the actual
dynamics of the environment, it can lead to suboptimal decision-making by the agent.

One of the simplest yet general ways to represent a valuable model of the
environment is through the state transition probabilities. Mathematically, the state transition
probability, denoted as P(s'|s, a), represents the likelihood of transitioning from state s to
state s’ when taking action a. It can be formulated as follows:

P(s']s,a) = Prlsy1 = 8'|sy = 5,0, = a], (2.20)



Chapter 2. Theoretical Foundation 32

where s; and a, are the state and action at time ¢, respectively. Alternatively, a one-step
transition matrix can define the environment model through state transition probabilities.
This representation, T'(s, s’) = Pr(s;41 = s'|s: = s), is @ square matrix with each row
representing a state s and containing the probabilities of transitioning to state s’ in a single
step. The sum of probabilities in each row, >, T'(s, s'), adds up to 1, ensuring a valid
transition model.

The one-step transition matrix can be used for sample model-based planning
procedures. This approach involves generating single or multiple trajectories by iteratively
sampling actions according to the policy dictated by 7" and observing the resulting states.
The sample model-based planning usually involves iteratively updating the estimates
based on new samples and refining the policy accordingly. This iterative improvement
allows the agent to learn from simulated experiences and adjust its decision-making
strategy for better environmental performance.

Another approach is to approximate the value function directly using 7' to avoid the
excessive computational overhead associated with model-based planning. The Successor
Representation method uses 7' to build a predictive map of the environment.

2.3.3 The Successor Representation

The Successor Representation (SR) algorithm, introduced by Dayan (1993),
captures the expected future visits of states to facilitate learning. It offers an alternative
perspective on modeling the environment dynamics compared to traditional methods
focusing on explicit transition models, such as model-based algorithms. Rather than
explicitly modeling state transitions, the SR algorithm aims to understand the underlying
dynamics of the environment by storing information about the expected future visitation of
states from the current state.

The SR algorithm builds a matrix, M, to track estimations. Given a known state
transitions matrix of the environment 7', M is computed as a discounted sum over T’
raised to the time step t¢:

M =T +~T +*T?* ++3T5... (2.21)
=> AT (2.22)
t=0

where ~ dictates the temporal discounting of future state occupancy. Each row of the
matrix represents the expected visitation frequencies of all states given the current state.
By updating this matrix during the learning process, the SR agent accumulates knowledge
about the likely future states it will encounter.
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To illustrate the concept, let us consider a grid world scenario with an SR agent
represented as a circle and a reward represented as a star (Fig. 5). The blue light in the
top-right frame indicates the agent’s current state in the 2D space. Based on its current
policy, the agent can gain insights into the expected discounted visits to other states
using the SR algorithm. Therefore, the occupancy predictions for future states will vary
depending on the chosen policy. For a randomly uniform exploration policy, the occupancy
predictions for the current state will resemble the lower-left frame. However, if the agent
follows a policy that maximizes the reward, the occupancy prediction of future states will
align with the lower-right frame. Single arrays below each matrix represent the state row in
M.

Figure 5 — SR occupancy grid.
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The value function for a state V'(s) can be define as the multiplication of the SR
matrix M (s, s’) with the environment’s reward function R(s) (STACHENFELD; BOTVINICK;
GERSHMAN, 2017):

= Z M(s, s")R(s), (2.23)

where M (s, s') encodes the expected discounted future occupancy of state s’ along a
trajectory initiated in state s:
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M(s,s") = E[i V[s; = §']]so = 5] (2.24)
=0

I[.] = 1if ' is reachable from s; and 0 otherwise.

The SR is independent of the reward function, enabling rapid adaptation to
changes in the environment’s reward structure. Thus, the agent only needs to relearn the
new reward function R(s) while maintaining the existing SR M, resulting in fast integration
of updated reward signals. By separating the representation of the environment from the
reward function, the SR facilitates efficient learning and decision-making in dynamic
environments. Moreover, as the agent acquires new experiences over interactions, M and
R(s) are updated with temporal-difference learning rules. Consider the agent goes from
sy — sy4+1 and receives reward r, then the agent can implement the learning rules:

M(st,8') <= M(st,8") + afls + yM(st41, ") — M (s, 8')] (2.25)
R(s") + R(s") + alr — R(s")] (2.26)

where « is a defined learning rate.

Furthermore, Deep Successor Reinforcement Learning (DSR) (KULKARNI et al.,
2016) offers a function approximation method for learning the successor representation
algorithm. To do so, DSR enables the estimation of the successor representation (SR) and
reward function by DNN with raw sensory observations as input. DSR computes the inner
product between the SR and predictions of immediate rewards to estimate the value
function.

2.4 CoBelL-RL

The “Closed-loop simulator of Complex Behavior and Learning based on
Reinforcement Learning and deep neural networks”, or CoBelL-RL for short, is a
neuroscience-oriented framework for efficiently setting up the closed-loop interaction
between an agent and an environment (Fig. 6). It focuses on trial-based experimental
designs, and each trial is further differentiated into agent-environment interactions referred
to as steps. Each step yields an experience tuple (s, a,r, s’), which the agent can learn
directly from or store in a memory structure for later learning.

CoBeL-RL has been structured to integrate modules that allow large flexibility in
building different learning setups. These modules are Environment, Agent, and Ultility.



Chapter 2. Theoretical Foundation 35

Figure 6 — The CoBelL-RL architecture.
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2.4.1 Environment Module

CoBelL-RL offers two types of environments: simple implementations, such as grid
worlds, and complex environments rendered by popular game engines like Blender Game
Engine (Blender Online Community, 2018), Godot (LINIETSKY; MANZUR, 2007), or Unity
(Unity Technologies, 2005). CoBelL-RL also includes additional modules such as the 3D
simulator module, an observation module for preprocessing observations, and spatial
representation modules for navigation to facilitate interaction with the game engines.

The CoBel-RLs spatial representation module enhances agents’ navigation
capabilities within the environment by using a simplified spatial representation rather than
relying on continuous physical movement. Currently, it creates a topological graph of
the environment, where nodes represent distinct locations and edges establish their
connectivity. Users can manually define the topological graph using the Blender Game
Engine (BGE) or automatically generate it using the grid graph module.

Furthermore, the spatial representation module also defines the agent’s action
space and specifies how actions correspond to transitions on the graph. The default
topological graphs in CoBeL-RL support two transition modes. The first mode, "without
rotation," limits transitions to neighboring nodes exclusively. In this mode, agents can move
between adjacent nodes without rotational movement. The second mode, referred to as
“with rotations”, permits both translational and rotational movements on the graph.

The observation module in CoBelL-RL provides functionality for preprocessing
environment observations before transmitting them to the RL agent. This module retrieves
the agent’s x-y position coordinates and current heading direction in its simplest form. The
RL agent can utilize these values independently or with visual observations. Additionally,
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the observation module preprocesses visual observations, including resizing them to a
user-defined size and normalizing pixel values within the [0, 1] range, enabling efficient
transmission to the agent.

The observation module can additionally introduce various types of noise, such as
Gaussian noise, to capture the inherent imprecision found in biological observations.
This feature enhances the realism of the learning environment, enabling the RL agent
to adapt and learn from noisy sensory inputs. Furthermore, the observation module
supports combining two or more observations, allowing for the simulation of multisensory
observations.

The 3D Simulators module bridges the CoBeL-RL framework and game engines to
enable simulation and rendering. This module facilitates communication between the
framework and game engines via web sockets. CoBel-RL supports three game engines
for simulation and rendering: BGE, Unity, and Godot.

For a particular interest in this study, we delved into the BGE Simulator. The default
BGE Simulator module utilizes three web sockets for communication. The control socket
handles the transmission of commands and retrieval of relevant control data, such as
object identifiers. Commands are encoded as strings and follow a comma-separated
format, containing the command name and corresponding parameter values. Likewise,
retrieved values are received in string format and are separated by commas. Visual
observations are obtained through the video socket, while sensory data is retrieved via the
data socket. Finally, a new Blender process is launched during module initialization, and a
user-defined Blender scene is opened.

2.4.2 Agent Modules

The RL agents are implemented via the Agent modules that define their behavior,
including learning, exploration strategies, and memory. All agents inherit from a common
abstract RL agent class and must implement functions for training, testing, and computing
predictions for a given batch of observations (DIEKMANN et al., 2023). Callbacks are also
implemented by agents to allow for fine-grained control during simulations. Information
such as the number of trial steps and rewards are collected by the agents and passed to
the callbacks. Custom callback functions can be defined by the user and passed as a
dictionary to the RL agent.

RL agents in CoBeL-RL can use the experience replay (LIN, 1992; MNIH et al.,
2015) as part of the learning algorithm. These agents are connected with different memory
modules that operate as buffers for experience replay. Experience tuples are stored in the
memory modules, providing the possibility of building up a history of experiences, which
are used for training. Agents and memory modules can be freely combined to study the



Chapter 2. Theoretical Foundation 37

effects of different replay models.

Here, we mention four available agents in CoBeL-RL: DQN agents, Dyna-Q, and
hybrid Dyna-DQN and DSR agents.

DQN agent

DQN agent encapsulates Keras-RL2’s implementation. It uses a small, fully
connected DNN by default and follows an epsilon-greedy policy. There are also versions of
DQN that implement Prioritized Experience Replay (SCHAUL et al., 2016) (PER-DQN)
and learn an environmental model.

Dyna-Q agents

The Dyna-Q model (SUTTON; BARTO, 2018) is implemented as a tabular agent.
In this approach, the agent’s Q-function is represented as an array with a size of |S| x |A]|,
where |S| denotes the number of environmental states and |A| represents the number of
available actions. Since this agent relies on a tabular representation, it can only be used in
discrete static environments where states are represented as abstract indices, such as
the grid world interface. The memory module is responsible for storing and retrieving
experiences. Users can choose between an epsilon-greedy policy (the default) or a
softmax policy for action selection.

Additionally, an optional action mask can exclude actions that do not result in a
state change from the selection process. Moreover, the agent’s Q-function is updated
online with each step and can be updated via experience replay. Experience replay can be
performed after each step, after each trial, or can be disabled altogether.

Dyna-DQN and DSR agents

CoBeL-RL introduces hybrid agents, specifically Dyna-DQN, which combine
elements from the Dyna-Q agent and DQN. The DQN agent does not rely on the
Keras-RL2. Instead, it can be implemented separately using TensorFlow 2 or PyTorch. The
agent can receive a set of observations corresponding to discrete environmental states. If
no observations are defined, a one-hot encoding of the environmental states is generated
as the observations.

Furthermore, CoBeL-RL provides a hybrid agent called Dyna-DSR, which
implements a variation of Deep Successor Reinforcement Learning (DSR) (KULKARNI et
al., 2016) and bases our RL agents in the next chapters. However, unlike the DSR, the
Dyna-DSR does not learn a separate feature representation of its observations. Instead,
reward and SR models are trained directly on the observations. The resulting learned SR
is called the deep successor representation (Deep SR).
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2.4.3 Analysis Modules

The CoBeL-RLs Utility proved useful modules for monitoring, environment editing,
and analysis of simulation variables, e.g., behavior and learning progress. These tools
offer the capability to display and store important metrics in RL, such as the escape
latency (the number of steps required to complete a trial), cumulative reward attained in
each trial, responses emitted by the agent in each trial or step, and the trajectory of the
agent. Additionally, for Deep RL agents, the response monitor can track the activity of units
within the layers.

Furthermore, the environment editing feature allows users to create grid world
environments by manually defining relevant variables, such as size, starting states, and
reward functions. Alternatively, users can utilize templates for specific instances of grid
world environments, such as an open field with a single goal location.

2.5 Summary

This chapter overviewed the fundamental concepts necessary to comprehend this
work. We began by introducing the basics of SLAM and followed with a comprehensive
explanation of RatSLAM and its structures. We delved into the Reinforcement Learning
paradigm, discussing its key elements and introducing the distinction between model-free
and model-based methods. Additionally, we presented the successor representation,
which is the foundation for the agents employed in this study. Lastly, we introduced
CoBeL-RL, on which this study’s proposed framework is built.
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3 Related Works

This chapter offers a literature review relevant to the doctoral thesis. We initially
investigated studies on spatial map construction using neuro-inspired frameworks, with a
specific focus on RatSLAM. Furthermore, the challenges RatSLAM faces in building maps
in various SLAM sessions are discussed. Subsequently, we discuss how the brain
may encode cognitive maps to facilitate adaptable behavior based on computational
frameworks that show latent learning effects to facilitate adaptive behavior. Finally, an
analysis is performed to assess the influence of various exploration design strategies on
acquiring cognitive maps and their impact on learning speed in spatial navigation tasks.

3.1 Building Maps with Neuro-Inspired Frameworks

The mentioned neurological processes have inspired building neuro-inspired
computational frameworks to solve real-world problems such as SLAM and understanding
the underlying navigation processes in animals’ brains through these models (YU et al.,
2019; TANG; YAN; TAN, 2018; WANG; YAN; TANG, 2021; MILFORD; WILES; WYETH,
2010). In particular, we mention frameworks that build cognitive map models based on
the integration of head direction cells and grid cells to perform path integration in 2D
(MILFORD; WYETH; PRASSER, 2004; ZENG; SI, 2017; ZENG et al., 2020; WANG; YAN;
TANG, 2021), or 3D SLAM (YU et al., 2019). Moreover, these algorithms rely on visual
signals to adjust the robot’s route when faced with inaccurate inputs when calculating path
integration and performing loop closure. Ultimately, they combine the spatial information in
a graph-like representation with a semi-metric relationship, which corresponds finds on the
cognitive maps’ underlying structure in the spatial context (PEER et al., 2021).

Our work focuses on RatSLAM, a well-known SLAM solution developed by
Milford, Wyeth, and Prasser (MILFORD; WYETH; PRASSER, 2004; BALL et al., 2013)
that incorporates visual sensing, robot movement, and pose cells, a 3D Continuous
Attractor Network (CAN), to accurately estimate the robot’s position and orientation during
exploration. Continuous Attractor Network operates similarly to the conjunctive grid and
head direction cells. RatSLAM selectively activates specific regions within the CAN by
integrating visual information and odometry data. The algorithm builds an “Experience
Map” combining visual input and CAN activity to represent the robot’s path traveled in the
environment.
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3.2 The Multisession Problem for RatSLAM

RatSLAM has demonstrated successful performance in both indoor and outdoor
SLAM tasks (PRASSER; MILFORD; WYETH, 2006; MILFORD; WYETH, 2008; MILFORD;
WYETH, 2010; MENEZES et al., 2018; TANG; YAN; TAN, 2018; BALL et al., 2013).
However, further development is still needed to enhance its capabilities in handling complex
mapping scenarios, including creating a consistent global map across distinct environments
(WERNLE et al., 2018). This challenge is closely associated with multisession SLAM,
where robots conduct mapping across multiple sessions.

Multisession SLAM becomes crucial when mapping an entire environment in a
single session becomes impractical, especially in expansive environments or when robots
experience shutdowns followed by subsequent restarts. Moreover, multisession SLAM
provides valuable solutions for addressing tracking failures that may occur in visual SLAM
due to sensory occlusion.

In multisession SLAM approaches, the robot may initiate a new session from a
random position in the environment and accurately incorporating this new position into the
previously created map poses a significant challenge, commonly known as the “kidnapped
robot” problem (MCDONALD et al., 2013; LABBE; MICHAUD, 2018). To address this
problem, Labbé e Michaud (2018) propose two potential solutions: (i) the robot localizes
itself on the existing map before starting the new session, or (ii) the robot begins mapping
at the new location using its reference coordinates and subsequently merges this new map
with the previously created maps to generate a unified representation. This work primarily
focuses on the latter solution, investigating methods to effectively integrate the maps from
different sessions into a cohesive and accurate representation.

Milford and Wyeth demonstrated using RatSLAM in multiple environments for
autonomous mapping in their work (MILFORD; WYETH, 2010). Their robot performed
delivery tasks for two weeks in different physical locations. It also can be moved between
these locations without prior notification. When the agent moves to a new environment for
the first time, it tries to locate itself on the previous map. If it fails to do so, RatSLAM
creates a new Experience Map for the new location. The new map has the same RatSLAM
structure but is topologically separate from the first map. This method keeps multiple local
maps in the same RatSLAM structure, but if there is only one connection between them,
the map can deform due to false metric representation. Therefore, this solution does not
solve the multisession scenario stated in (ii).

In recent work, Tang, Yan e Tan (2018) developed a navigation system that
uses the relationship between the hippocampus and episodic memory to help mobile
agents complete multistep tasks. This approach uses RatSLAM as the hippocampus’s
spatial navigation mechanism and episodic memory to recall the steps of a given task.
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Furthermore, the researchers proposed an enhancement allowing the robot to achieve
global localization within familiar areas. In their global localization module, the system
addresses the “kidnapped robot” by allowing it to shut down and restart randomly within
the environment. After restarting and turning on the global localization module, RatSLAM
utilizes the robot’s visual input to determine whether the current location matches any
mapped area information. Instead of generating new experiences as it would with new
visual input, RatSLAM compares the visual information with that stored in the map. This
approach aligns with scenario (i) mentioned earlier. However, this solution only works
effectively when the robot restarts within a previously mapped area. As a result, the robot
cannot explore distinct regions in multiple sessions when operating in global localization
mode since no new experiences are created in this new environment. Consequently, it
does not address the multisession scenario (ii).

While RatSLAM itself does not provide a complete solution for multisession
mapping, there have been efforts to address this challenge in other non-biological SLAM
frameworks (MCDONALD et al., 2013; LABBé; MICHAUD, 2014; WANG et al., 2016;
LABBE; MICHAUD, 2018; DAOUD et al., 2018; SCHNEIDER et al., 2018; BURGUERA;
BONIN-FONT, 2019; CAMPOS et al., 2021; LABBé; MICHAUD, 2022). Two notable
examples are SLAMM (DAOUD et al., 2018) and ORB-SLAM 3 (CAMPOS et al., 2021),
which tackle the multisession scenario by initiating a new map when tracking is lost. These
solutions continuously compare new inputs with those from different stored maps and
perform loop closures based on whether the information belongs to the “active” map or
another map. If it belongs to another map, the two maps are merged, creating a new
"active" map. This merging process involves aligning the matched inputs and integrating
the information from the current map into the stored one.

Overall, previous approaches have addressed multisession mapping either in
non-biological SLAM frameworks or only partially for RatSLAM, such as the work by
(TANG; YAN; TAN, 2018) for scenario (i). This work focuses on an approach that mutually
solves scenario (i) and the more challenging scenario (ii). However, to comprehensively
deal with the multisession challenge in RatSLAM, a solution must consider the RatSLAM
structures and their intrinsic relationship. For instance, reactivating a RatSLAM experience
on the map requires correctly activating the visual input and the CAN related to that
experience. Building multisession solutions for RatSLAM, particularly for its network,
presents unique challenges.

In this context, we propose a novel approach to merge the RatSLAM Pose Cell
Network, ensuring the consistency of the Experience Map and performing accurate loop
closures following the merging of RatSLAM structures. Existing literature has yet to
extensively explore this aspect, making our proposed solution a valuable contribution to
the field. The development of the multisession solution for RatSLAM is found in Chapter 4.
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3.3 Learning Cognitive Maps for Flexible Behavior

Latent learning has been a topic of great interest in neuroscience for nearly a
century. Behavioral studies have shown that this learning benefits animals in seeking
rewards more quickly when familiarized with the empty environment than those with no
previous experience but rewarded from the start (BLODGETT, 1929; TOLMAN; HONZIK,
1930). The initial focus of researchers was to elucidate if animals exhibit adaptive behavior
through stimulus-response or cognitive map theories (BLODGETT, 1929; TOLMAN, 1948;
SUTHERLAND; LINGGARD, 1982; SUTHERLAND et al., 1987; KEITH; MCVETY, 1988).
They also studied the brain regions responsible for facilitating this type of learning
(KIMBLE; GREENE, 1968; KIMBLE; BREMILLER, 1981; MEANS, 1969; OWEN; BUTLER,
1980; KIMBLE; JORDAN; BREMILLER, 1982). Recent studies have explored latent
learning experiments in analyzing neural activity in animals’ spatial and non-spatial
decision-making tasks (GUO et al., 2020; BARROS et al., 2021).

Blodgett (1929) introduced the concept of latent learning through his experiments
with rats in a maze. His study divided the rats into one control and two experimental
groups. The control group received rewards for successfully navigating the maze from the
first day, while the experimental groups were only rewarded after the third and sixth days.
Blodgett observed that the control group consistently improved their performance over
time, with a decreasing number of errors in subsequent trials. In contrast, the experimental
groups showed no evidence of learning during the unrewarded days. However, both
groups exhibited a rapid decrease in errors once rewarded, indicating that learning had
taken place latently during the non-rewarded trials. Hence, when comparing maze running
performance, latent learning refers to the significant performance improvement of a
“rewarded” group compared to other groups that underwent "unrewarded" trials during the
exploration phase (THISTLETHWAITE, 1951).

Tolman and Honzik made further investigations into latent learning (TOLMAN;
HONZIK, 1930; TOLMAN, 1948) and showed that rats also improved learning after
becoming familiar with an even more complex 14-arm T-maze (Fig. 7a,b). The rats were
divided into three groups: the rewarded, unrewarded (control), and the late rewarded group.
The rewarded group received food rewards at the end of the maze, leading them to learn
and navigate efficiently. On the other hand, the unrewarded group received no rewards,
serving as a control group to compare against the other two groups. The late rewarded
group received no rewards for the first ten days but was later reinforced with food rewards.
Similar to the findings observed by Blodgett, the late-rewarded group demonstrated
notable improvement in locating the reward within the maze despite no evidence of
learning before the introduction of rewards. Furthermore, the researchers conducted
experiments in which rats were guided to follow a specific route leading to a reward
location (Fig. 7c). Subsequently, new accessible routes were introduced after blocking the
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learned one. Interestingly, most animals chose the arm whose direction and distance were
closest to the former reward location (Fig. 7d). These experiments supported the theory
that the animals acquired a cognitive map and could internally compute novel routes using
their knowledge of the distance and direction to the reward location.

Figure 7 — Tolman’s experiments in latent learning.
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In addition to the evidence supporting the formation of cognitive maps in latent
learning experiments, research suggests that replay mechanisms (PAVLIDES; WINSON,
1989; KARLSSON; FRANK, 2009) play a crucial role in the consolidation and utilization of
these maps (OLAFSDOTTIR; CARPENTER; BARRY, 2016; POULTER; HARTLEY;
LEVER, 2018; MOMENNEJAD, 2020; SCLEIDOROVICH et al., 2020; DIEKMANN;
CHENG, 2023). One is awake replay (KARLSSON; FRANK, 2009), where place cells
where observed to reactivate during spatial navigation, both in the forward direction
(before actual movement) and in the reverse direction (after task completion). In a recent
study, Guo and colleagues reported a potential role for replay from rest periods in
consolidating learning between different places in an environment (??). In the absence of
rest, animals’ spatial representations tend to disintegrate from the spatial environment’s
structure, a phenomenon not observed in animals that take regular rest breaks.

Latent learning experiments yet raise a crucial question about how cognitive
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maps are encoded in the brain, particularly concerning animals exhibiting flexible
behavior in response to rewards. A prominent explanation is provided by the predictive
map hypothesis, which asserts that animals acquire the ability to anticipate long-term
rewards by predicting their future locations (or states) based on their current position
(STACHENFELD; BOTVINICK; GERSHMAN, 2017; GERSHMAN, 2018). According to this
hypothesis, place cells encode predictions of future states, which illustrates why the firing
patterns of place cells are modulated by factors such as obstacles and environmental
topology (STACHENFELD; BOTVINICK; GERSHMAN, 2017). Furthermore, the predictive
map perspective is formulated within the Reinforcement Learning paradigm, wherein the
Successor Representation algorithm (DAYAN, 1993) is employed to capture the underlying
mechanisms of predictive maps.

Several studies have explored Successor Representation (SR) as an alternative
framework for understanding flexible behavior. Gershman (2018) provides a comprehensive
review of behavioral and neural studies that support the SR structure. Russek et al. (2017),
de Cothi et al. (2022), Ducarouge e Sigaud (2017) investigate the SR as a model of
behavioral flexibility, comparing it with other RL algorithms such as model-based and
model-free approaches. Notably, Ducarouge e Sigaud (2017) revisit experiments on latent
learning using the SR in Blodgett’s maze (BLODGETT, 1929).

However, a significant challenge for the RL and thereafter for the SR lies in defining
states for the algorithm to predict their relationships accurately. This may be necessary in
situations where the explicit definition or pre-definition of states in an environment is
challenging or impractical. Moreover, states can be acquired from raw data, which may
introduce complexity if they are sparse or have high dimensionality. One approach
involves pre-defining states before simulations, which requires modeling the dynamics of
the environment as an additional task. Otherwise, an alternative method is to utilize
State Representation Learning (SRL) (LESORT et al., 2018) techniques, which aim to
autonomously learn and represent states based on the available sensory information or
observations.

This work presents a framework integrating two fundamental processes, mapping
and learning, within the CoBeL-RL (DIEKMANN et al., 2023) framework. Our extension to
CoBeL-RL allows RL agents to learn in unfamiliar environments using RatSLAM as
an SRL. RatSLAM allows the agent to differentiate between different locations in the
environment, relying on its pose cells network. This capability allows the agent to learn
from an unknown condition of the states of the environment, filling a gap in existing works
that assume that learning starts totally or partially with pre-defined states. Moreover, by
applying this framework to the study of latent learning, we aim to gain novel insights into
the mechanisms that underlie flexible behavior in spatial navigation and cognitive maps.
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3.4 Experimental Designs in Latent Learning

A relevant question regarding latent learning is whether this learning depends on
specific environmental or behavioral conditions and constraints during the learning
process. An example is the use of doors to guide animal trajectory and modify their
exploration strategy within mazes, as explored by Tolman (TOLMAN, 1948). Daub
(1933) analyzed this impact on maze performance. The animals in the experiment were
divided into four distinct groups: two groups were exposed to an environment featuring
doors, further categorized into latent and standard subgroups, while the remaining two
groups were devoid of doors, consisting of latent and standard subgroups. In the maze
pre-training phase, latent door and no-door groups were allowed to freely explore a 14-T
maze for eight hours daily without any food or restrictions imposed by the doors. Thus, the
animals had unrestricted movement during this period. Each animal received a daily trial to
run the maze in the reward phase. In this evaluation period, the doors were closed behind
the animals for the door groups every time they passed, preventing them from retreating.
The results indicated a significant difference in both time and error scores between the
latent learning and the standard groups, with the latent without doors showing the lowest
error scores. Interestingly, the presence of doors did not significantly impact scores for
either latent group. Nevertheless, it is important to mention that both latent learning groups
had the same pre-exposure regime, i.e., they explored the environment without doors. This
condition might have influenced them to exhibit similar learning scores.

Latent learning experiments also offer various design prospects that may impact
animals’ understanding of spatial relationships within their environment and how they build
cognitive maps. A literature review by Thistlethwaite (1951) categorized different types of
latent learning designs employed during the maze pre-training phase. The first type
involved a single attempt to explore the environment. The second type included brief
periods of exploration and living in an empty maze, followed by introducing a relevant goal
object and subsequent test trials. The third type includes trials where rats navigated a
maze with pre-satiated target objects, followed by additional tests after inducing hunger or
thirst. Lastly, the fourth type consisted of tests conducted with hungry or thirsty rats in a
maze containing relevant and irrelevant goal objects. Notably, the reports reviewed
consistently demonstrated the presence of latent learning across all these experimental
designs.

Within this study’s scope, we focus on the first two types of latent learning design
experiments. The single attempt (or single trial) exploration is characterized by establishing
a relationship between the goal location and changing the animal’s state during exposure,
such as removal from that location and confinement upon arrival. Moreover, building a
connection to the goal location can also be achieved by placing the animal at the goal
location. In contrast, the second type, time-fixed exploration, does not involve such a
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connection to the goal location, as it does not provoke changes in the animal’s state at this
place. Instead, the animal is removed from its current position once the allotted time limit
expires.

Karn e Jr. (1946) conducted experiments to investigate differences in maze
performance over different experiment designs. Specifically, they examined the influence of
various pre-training experiments on latent learning to assess rat performance in finding
food using a Dashiell maze. The animals were exposed to different conditions, including
familiarity with handling, confinement, and exploratory type one and two experiences. The
results demonstrated that the pre-training design closest to the rewarded task, i.e.,
single-trial exploration, had a more pronounced effect on improving task performance.
Furthermore, exploratory maze experiences significantly impacted animals’ latent learning,
overcoming the effects of pre-training without exploration.

In an additional investigation by Sutherland e Linggard (1982), the latent learning
performance of rats was assessed through different types of exposure before training in
the Morris water maze (VORHEES; WILLIAMS, 2006). The rats were divided into three
groups: one group received exposure to the correct platform location, another was exposed
to an incorrect location, and the third was exposed to the correct location but in a different
room (naive group). During the training trials, each rat had a brief 30-second swimming
period before being placed on the platforms. Subsequently, they were given a 10-minute
timeframe to complete the task during the reward trials. Results demonstrated that the first
group quickly learned the task, while the second group took longer to find the platform than
the naive group. However, once learned, the second group outperformed the naive group.

The findings from (KARN; JR., 1946; SUTHERLAND; LINGGARD, 1982) indicate
that pre-training strategies that closely resemble the rewarded task, such as single trial
exploration, significantly influence rat performance more than time-fixed exploration in
latent learning. Furthermore, these findings emphasize the role of exploration in facilitating
efficient navigation toward a goal during cognitive map acquisition. On the other hand, lack
of exploration or exploration in different environments during pre-training does not
significantly affect latent learning.

In conclusion, the design of latent learning experiments plays a crucial role in
influencing the rate at which animals learn when a reward is introduced. In this study, we
investigate the underlying reasons for these differences observed in latent learning.
We hypothesize that the variations in exploration designs result in distinct learned
representations of the environment, ultimately impacting the learning speed between
single trial and time-fixed exploration. Consistent with the earlier findings, the studies
emphasize the necessity of some exploration to observe the latent learning effect.
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3.5 Summary

This chapter focuses on the challenges associated with navigating and learning
in unfamiliar environments. We introduce the RatSLAM, a computational cognitive
model that tackles the complex task of mapping and merging maps from multiple
sessions. Furthermore, we delve into latent learning and examine current studies in
reinforcement learning setups to shed light on how cognitive maps may be encoded in
the brain. In addition, we explore studies that show the impact of various exploration
strategies during the unrewarded phase on learning speed. The findings from these works
indicate that exploration strategies closely aligned with the critical rewarded run lead to
significant improvements in learning compared to uniform unrewarded exploration or
limited exploration.
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4 A Multisession Approach for RatSLAM

This chapter presents our proposed approach’s methodology and results to
enhance RatSLAM mapping capability across multiple SLAM sessions. We address the
type (ii) multisession solution, where the robot initiates mapping in a new location using its
reference frames and coordinates, subsequently integrating this map with previously
stored ones. We have applied this method to diverse environments, ranging from small
virtual to large-scale real-world datasets.

Our approach assumes the robot has already created and saved a map as a
RatSLAM structure. This structure includes the Local View Cells (LVC), Pose Cells
Network (PCN), and Experience Map (EM). This saved map is the loaded map of the
environment. When the new session begins, the agent loads this map into its memory but
assumes no prior knowledge about its possible location on this map.

During the current session, the agent starts building a new map, also known as the
partial map of the environment. Our method involves merging partial and loaded maps if
the robot crosses any location earlier mapped in the loaded maps. Hence, the merging
occurs when the loaded and partial maps intersect at a specific location in the physical
environment. The two RatSLAM structures are combined through the merge mechanism,
resulting in a unified representation that includes a single LVC, PCN, and EM to represent
the environment accurately. However, if the robot begins the session at a known location
within the loaded map, the algorithm activates the corresponding experience within the
loaded map. This process is equivalent to multisession solution type (i). We elaborate on
this merging process in the subsequent sections.

4.1 Methodology

The merging process is triggered when the agent generates a template in the
partial map that matches a previously saved template in the loaded map (Fig. 8), which
means the robot has visited a common location in both mapping sessions. To compare
these templates, we employ the same procedure used in RatSLAM, i.e., where a new
template from the partial map is compared to all the templates in the loaded map.

We formalize that both loaded and the partial maps consist of RatSLAM’s structures
(see Fig. 3), where V', P, E, Im and pm stand for Local View Cell, Pose Cell Network,
Experience Map, loaded map and partial map, respectively. The template of the partial
map matches a template from the loaded map V" = VIm (Fig. 8), where n,, is the
number of templates of VP™. Furthermore, the views V™ and VIm are linked to the center
of the activity packet, displayed as the green cubes, PP™ and P!, respectively. However,
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even though the templates represent the same place, their activity packets may activate
different coordinates (2, 3/, #') in the respective PCN, PP™ and P'™. Similarly, for the EM,
the templates and activity packets are associated with experiences ¢P™ and ™ (Fig. 8,
green nodes), where these experiences may have different poses coordinates.

Relevant information for merging also depends on the last template activated in
the partial map before meeting the condition for merging, corresponding to the state
k = n,, — 1. Note that the linked centers of the activity packet PP™ and PP™ are spatially
separated by a distance d. Likewise, their associated experiences ¢P™ and e} have link
information (Eq. 2.12) that encodes the distance information between their poses.

Figure 8 — Condition for the merging procedure between two RatSLAM structures.
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During the merging process, the partial RatSLAM map structures and their
relationships are inserted in the loaded map in four operations (Fig. 9): (i) the LVC are
merged (Fig. 9a), (i) the matching template in the partial map V" is linked to a new PCN
activity packet location, which corresponds to a shift (Fig. 9b), (iii) the associations
between all LVC and PCN are shifted by the same amount (Fig. 9¢), and (iv) the EMs are
merged (Fig. 9d). The following subsections provide a more detailed explanation of these
operations. Once the merge procedure is complete, a single RatSLAM structure is
obtained (Fig. 9e) and continues the mapping session.

4.1.1 Merging Local View Cells

The purpose of merging LVC is to combine the templates from partial and loaded
maps into a unified LVC structure. All templates from the partial map are concatenated to
the LVC of the loaded map, except for the most recently acquired template already
included in the loaded structure.:

Vlm _ [Vlm,1’ - Vlm,nvl’vpm,1’ - me,nvpfl] (4_1)
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Figure 9 — Merging partial and loaded RatSLAM maps.
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where n,,; is the number of templates of V'™,

e

FINAL MERGED RATSLAM MAPS

In the last stage of the LVC merge, the template that represents the current robot’s

view scene VM is activated in the V'™ (Fig. 9, green sphere).

4.1.2 Pose Cells Network Activation

Once the LVC is merged, the activated template is V™. Thus, to correctly activate
the PCN units associated with this template, an injection of activity should occur at the
coordinates of P'M. Before the merge procedure, the last activated packet in the partial
map was PP™ (Fig.9b, light green cube). Therefore, a change of activity from PP™ to P is
necessary and can be observed as a shift of activity in the P'™ (Fig. 9b, green arrow). The

difference of coordinates between PP™ and P'™ is defined as:

Az = :c; + xi;
Ay =y, +u;
A =0+ 0,

(4.2)

where (z7,y..0,) and (z},y;, ;) are the coordinates of activity packets PP™ and P,",

respectively.
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4.1.3 Shifting Association between LVC and PCN

To ensure consistency in the loaded map, all associations between LVC and PCN
in the partial map must be updated to match their new positions in PCN. As an example,
we consider the penultimate view in the partial map. PP™ must be shifted to keep the
previous distance d to P'™ (Fig. 9c, red arrow). The transformation function that shifts the
activity packet P™ to P/™ is defined as f():

Fla, v, 00) = (0, 45, 00);
= (2}, + Az")(mod n,);

where (z/,,y.,0) are the coordinates of P/". The (2, v/, 0.) are the shifted coordinates of
P™ in the loaded map.

Once this shifted operation is carried out, the excitatory links 3™ are updated as
follows:

I m .
nn;],l—&-i,f(x’,y’ﬂ’) = ﬁgz’,y’ﬂ” 1€ {1, vy Nyp — 1} (44)

where (', 1/, 0’) are the coordinates of the energy packets from PP™.

4.1.4 Merging Experience Maps

Before merging the experiences of EP™ into E'™, it is necessary to establish a
consistent transformation between the experiences in the partial map and those in the
loaded map. Before the merge, the experience ¢P™ represented the actual pose of the
robot and was linked to ef™ in EP™, as shown in Fig. 8. This eP™ is equivalent to ™ in the
loaded map. The experiences ¢P™ and e encode the final and penultimate poses of the
robot in the partial map.

The topological-metric relation between €™ and eP™ must be kept between /™ and
em after the merge process by applying the same transformation on eP™ and e}™. P™ after
the transformation is denoted as ¢! ., (see notation in Eq. 4.8) and it is shown in the
merged EM E'™ in Fig. 9d where the dashed red line indicates the transformation.

This transformation involves a combination of translational and rotational operations
in two dimensions. Let p; = [z;, v, 6;]" and p, = [z,, y,, 0,]* be the poses of the equivalent
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experiences €™ and eP™, respectively. The function t transforms the pose p, to the pose
pi, i.e. t(zp, yp, 0,) = 21, y1, 01, @and is defined as follows:

t(2p, Yp, Op) = [H(p, Yp), 0p + Ag)". (4.5)
where Af = 6, — 0, and H(z,,y,) is defined by:

cos(Af) —sin(A0)
sin(Af)  cos(A6)

x, — Az

H(xp,yp) = u, — Ay
b

. (4.6)

where Az = z; — z, and Ay = y; — y,. Once function t is defined, it must be applied on
the poses of EP™ experiences so they could be inserted on the merged E'™, which is
carried out through operation 7', defined below. In addition, operation 7" also changes the
information of the new experiences in E'™ with their correspondent template and energy
packets according to operations (i) and (iii) loaded map’s structures V'™ and P'™.

6!’21+i:T(65m)7i: 17...7nep_]-; (4 7)
i+1y Im,i+n,,; i )
= {Vlm, + l, P‘)cr?x/:":;/79]/)7 t(ppm )}

where eP™ is an experience from E'™. The n,, and n., are the number of experiences in
E'™ and EP™ maps, respectively. It is important to mention that ¢P™ is not added in E™
because it is already equivalent to ™. Then, the new experiences are inserted on the
merged E'™,

EM™=1[em . em efm el ] (4.8)

Ne? “Nel+19 ***) Pngi+nep—1

The last step iv) is to connect, through links, the added nodes on the E™ as follows:

li+nel7j+nel = {Ap(z—’—nd)(]—i_nd)’ At’h]} (49)

i=1,...n, —2and j =2, ..., n., — 2, which is similar to (2.12). As eP™ is not inserted its
equivalent, €™, has to be connected to ¢?™ through (4.9) with i + n., being k and j + n,; is
u.

4.1.5 Merge Algorithm

The merge algorithm is outlined in the Algorithm 1, highlighting the equations that
make up each step. Complexity analysis can consider the match and the merge routines
separately. The computational complexity of the merge process is determined by the
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matching of a template in the partial map of size n,, with a template of size n,, from
previous sessions stored in «, the computational complexity can be given by:

Matching routine: depending on the search implementation, it could be x x O(1),
Kk X O(log(ny)) or & x O(ny);

+ MergingLocalViewCells(line 2): O(n,,);

ComputeDeltasPCN(line 3): O(1);

P'™ updating (line 4): O(1);

ShifitingAssociationLvcPcn(line 5): O(n,,);

ComputeTransformation (line 6): O(1);

+ MergeExperiencesMaps (line 7): O(ney).

Algorithm 1 Merge of RatSLAM Structures

1: procedure MERGE (V™ VP Pm ppm gim pEpm)

2: VM MerglngLocaIV|ewCeIIs() > Eq. 4.1
3: Ax', Ay', A§" < ComputeDeltasPCN() > Eq. 4.2
4: PCITrrent ¢ pim > PCN activation
5: P'™ < ShifitingAssociationLvcPcn() > Eq. 4.4
6 t() «+ ComputeTransformation() > Eq. 4.5
7 E'™ « MergeExperiencesMaps() > Eq. 4.7,4.8,4.9

In summary, the merge algorithm’s complexity stays within linear behavior when it
comes to Local View Cells (in partial and loaded maps) and Experience Map sizes.

4.2 Experimental Setup

This study explores four different environments, and for each of them, datasets of
video streams or image frames were collected from tours conducted by real and virtual
robots. The four environment datasets consist of i) videos generated by a virtual robot
during an ellipse-shaped tour, referred to as the Virtual Tour dataset; ii) videos generated
by a real robotic platform touring inside a research lab, known as the Lab Tour dataset; iii)
frames extracted from the “iRat” Australian dataset; and iv) frames extracted from The
New College Vision and Laser dataset. The latter two were employed to validate the
OpenRatSLAM implementation (BALL et al., 2013). Each environment is further detailed in
the subsequent subsections.

To evaluate the proposed multisession approach, the maps from single-session
and multisession are compared using the lterative Closest Point (ICP) algorithm
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(BESL; MCKAY, 1992). ICP addresses the registration problem by iteratively finding a
transformation matrix that aligns the two maps as closely as possible. To evaluate the
accuracy of the transformation matrix, ICP computes the root mean square errors (RMSE)
between corresponding node distances in both maps. The iterations stop when the
RMSE falls below a defined threshold, or the algorithm reaches the maximum number of
iterations. By providing the RMSE over the distances of corresponding nodes, ICP yields a
single value that evaluates the overall trajectory of the multisession and single-session
maps, with an RMSE of 0 indicating a perfect match. The Libicp algorithm (GEIGER;
LENZ; URTASUN, 2012) is utilized for these purposes in this article.

The RatSLAM algorithm requires a specific set of parameter values for each
environment (BALL et al., 2013; MILFORD; WYETH, 2008). These parameters are
required in all the main structures, i.e. LVC, PCN, and EM. The parameter values for each
environment are displayed in Tab. 2. In both the “/Rat” and New College datasets,
odometry information is obtained from the robot’s wheel encoders, so the Visual Odometry
parameters were not used.

The multisession RatSLAM source code was implemented using Python 3.6 and is
available at <https://zenodo.org/badge/latestdoi/568248424>.

4.2.1 Virtual Tour experiment

In the Virtual Tour experiment, the robot takes an ellipse-shaped tour in a virtual
environment (Fig. 10). The environment and the robot were modeled in an earlier version
of CoBeL-RL (DIEKMANN et al., 2023).

This experiment consists of two mapping sessions. In the first session, the robot
completes three-quarters (3/4) lap through the environment (Fig. 10b (blue line)). When
the robot reaches the end of this path (blue diamond), the experience map is saved. In the
second session, the virtual agent loads the previously saved map but starts mapping from
a new location (yellow cross) within the environment, creating the partial map. The robot
performs almost three complete laps (yellow line) and eventually travels on the same path
as in the first session.

The merge between the partial map from the second session and the loaded map
from the first session takes place when the agent encounters a view that is already stored
in the loaded map (Fig. 10b, red circle). Once the merge occurs, the virtual robot continues
mapping using the merged RatSLAM structure until the end of the second session.

It is important to note that the video frames that generated the map in the first
session are included in the video frames used in the second session. Specifically, the
video from the first session is embedded in the video stream used during the second
session. As a result, when the agent reaches the merge point in the second session,
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Table 2 — Parameter of RatSLAM’s to each tested environment.

name value
Virtual Tour [ Lab Tour | iRat | New College

# Visual Odometry

vtrans_image_x_min 0 80 - -
virans_image_Xx_max 256 560 - -
virans_image_y_min 0 240 - -
virans_image_y_max 64 360 - -
vtrans_scaling 10.0 10 - -
virans_max 0.1 0.1 - -
vrot_image_x_min 0 80 - -
vrot_image_x_max 256 560 - -
vrot_image_y_min 0 240 - -
vrot_image_y_max 64 360 - -
camera_fov_deg 360 50 - -
camera_hz 1 1 - -
# Local View module

vt_panoramic 0 0 0 1
vt_match_threshold 0.05 0.04 0.035 0.059
vt_shift_match 5 4 4 4
vt_step_match 2 1 1 10
vt_normalisation 0.5 0.5 0.5 0.5
vt_active_decay 1