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Resumo
Navegar por ambientes desconhecidos e buscar por recursos, como comida e água, é
fundamental para a sobrevivência de muitos animais, incluindo os seres humanos. Por
quase um século, pesquisas em neurociência comportamental e cognitiva apoiam a
existência dos mapas cognitivos, sendo usados por animais para navegar no espaço.
Mapas cognitivos permitem que animais realizem tarefas complexas, incluindo a aquisição
de um mapa global a partir de ambientes distintos uma vez que as conexões entre
eles são estabelecidas. Ademais, pesquisas apontam que a construção de um mapa
cognitivo prévio à participação em tarefas recompensadas pode acelerar o processo de
aprendizado, conforme evidenciado por experimentos de aprendizado latente. No entanto,
os fatores específicos que contribuem para as diferenças observadas na velocidade de
aprendizado, influenciadas por projetos experimentais e estratégias de exploração no
aprendizado latente, permanecem uma questão em aberto. Esta tese de doutorado
propõe novas abordagens computacionais inspiradas em princípios biológicos para a
construção de mapas espaciais que facilitem a navegação e aprendizado espacial. O
algoritmo de Localização e Mapeamento Simultâneos (SLAM), inspirado no processo de
navegação no cérebro de roedores, conhecido como RatSLAM, foi ampliado através do
desenvolvimento de uma nova abordagem de fusão de estruturas para lidar com o desafio
do mapeamento em múltiplas sessões. O RatSLAM também é integrado como um
algoritmo de aprendizado de representação de estado dentro do framework CoBeL-RL,
um framework de aprendizado por reforço construído com base em descobertas recentes
em neurociência, permitindo que agentes aprendam tarefas espaciais em ambientes
desconhecidos. Ao utilizar esse framework, experimentos de aprendizado latente são
investigados para obter percepções sobre o impacto dos diferentes projetos experimentais
e estratégias de exploração na velocidade de aprendizado. Os resultados evidenciam o
êxito do RatSLAM no mapeamento em múltiplas sessões com o uso de conjuntos de
dados reais, bem como a habilidade de agentes virtuais de aprender tarefas espaciais em
ambientes desconhecidos. Além disso, evidencia-se que os agentes desenvolvem
Representações Sucessoras singulares, dependendo dos projetos experimentais
específicos, o que oferece uma explicação potencial para as variações na velocidade do
aprendizado nos experimentos de aprendizado latente. No geral, esta tese contribui para
a robótica e neurociência computacional aprofundando a compreensão dos processos
cognitivos envolvidos na navegação espacial e fornecendo percepções práticos para o
desenvolvimento de sistemas robóticos mais eficazes e modelos computacionais
inspirados em princípios biológicos.

Palavras-chave: Navegação Espacial, Mapas Cognitivos, Aprendizado Latente,
Representações Sucessoras, RatSLAM.



Abstract

Navigating unfamiliar spaces and searching for resources, such as food and water, is
fundamental for survival in many animals, including humans. For nearly a century,
behavioral and cognitive neuroscience research has supported the existence of cognitive
maps, which animals employ to navigate spatially. Cognitive maps enable animals to
perform complex tasks, including acquiring a global map from distinct contexts once
connections are established. Furthermore, studies have revealed that building a cognitive
map before engaging in reward-based tasks can enhance learning speed, as evidenced by
latent learning experiences. However, the specific factors contributing to the observed
differences in learning speed, as influenced by experimental design and exploration
strategies in latent learning, remain an open question. This doctoral thesis proposes novel
computational approaches inspired by biological principles for building spatial maps to
facilitate spatial navigation and learning. The Simultaneous Localization and Mapping
(SLAM) algorithm, inspired by the navigation process in rodent brains, known as RatSLAM,
has been extended by developing a novel structure merge approach to address the
challenge of multisession mapping. RatSLAM is also integrated as a state representation
learning algorithm within the CoBeL-RL framework, a reinforcement learning framework
built on recent neuroscience findings, enabling agents to learn spatial tasks in unknown
environments. By utilizing this framework, latent learning experiments are investigated to
gain insights into the impact of different experimental designs and exploration strategies
on learning speed. The results demonstrate RatSLAM’s successful performance in
multisession mapping using real-world datasets and the ability of virtual agents to learn
spatial tasks in unfamiliar environments. Additionally, it is shown that agents acquire
distinct Successor Representations based on the specific experimental designs, providing
a potential explanation for variations in learning speed for latent learning experiments.
Overall, this thesis contributes to robotics and computational neuroscience by deepening
our understanding of the cognitive processes involved in spatial navigation and providing
practical insights for developing more effective robotic systems and computational models
inspired by biological principles.

Keywords: Spatial Navigation, Cognitive Maps, Latent Learning, Successor Representation,
RatSLAM.
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1 Introduction

Navigating unfamiliar spaces and searching for resources such as food and
water is essential for many animals’ survival, including humans. Although the specific
mechanisms underlying spatial navigation are complex and unclear, evidence suggests
that the process involves two critical components: mapping the environment through
exploration and efficiently navigating on that map towards specific goals (POULTER;
HARTLEY; LEVER, 2018; HILLS et al., 2015). Nevertheless, how animals navigate has
been a recurring research question.

In the mapping phase, spatial-related cells in the hippocampal formation (O’KEEFE;
NADEL, 1978; TAUBE; MULLER; RANCK, 1990; HAFTING et al., 2005; BEHRENS et al.,
2018) integrate animals’ self-motion estimation and environmental cues information (JIN et
al., 2020; POULTER; HARTLEY; LEVER, 2018), allowing them to construct a cognitive
map of the space (TOLMAN, 1948). This cognitive map serves as one of the foundations
for efficient navigation, in which animals can learn and adopt distinct strategies to navigate
familiar and unfamiliar places (JIN et al., 2020). One could use stimulus-response (S-R)
association, where specific actions are executed in response to stimuli, or use spatial
relationships between landmarks and compute navigation paths internally with the
cognitive map.

1.1 Cognitive Maps and Spatial Cells

Behavioral experiments on latent learning conducted by Tolman and Honzik
(TOLMAN; HONZIK, 1930; TOLMAN, 1948) provided evidence that animals create an
internal representation of their environment, the cognitive map, during maze exploration. In
this type of learning, groups of animals are pre-exposed to an empty maze for a specific
period or until they reach non-rewarded goals. Consequently, even without explicit rewards,
rats with prior maze familiarization could locate food more effectively, avoiding dead ends,
computing mental detours, and finding environmental shortcuts, outperforming rats with no
previous experience but with food available from the start.

The discovery of specific types of brain cells that activate for spatial features of the
environment plays a crucial role in spatial navigation and has supported the cognitive map
theory. O’Keefe and Dostrovsky discovered “place cells” in the hippocampus that activate
when an animal is located in a circumscribed region of space, forming a place field with
intense activity at the center of the animal’s location (O’KEEFE; NADEL, 1978) (Fig. 1). In
addition, Taube and collaborators reported “head direction cells” in several brain regions
that activate when the animal’s head is rotated in a distinct direction (TAUBE; MULLER;
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Figure 1 – Spatial related cells found in mammals/rodents brain

Source: Adapted from (BEHRENS et al., 2018)

RANCK, 1990). Furthermore, grid cells discovered by Hafting et al. (HAFTING et al., 2005)
in the entorhinal cortex are activated when the animal’s location aligns with a vertex of a
hexagonal grid overlaid on the environment, known as a grid field. While pose cells seem
to represent an animal’s position in space, the periodic activation pattern of grid cells
allows for the formation of highly efficient spatial representations. It is believed to be a
metric for spatial calculations (HAFTING et al., 2005).

In addition, researches with grid cells have shown that cognitive maps can be
adapted and changed to suit complex mapping scenarios, such as building global maps
from initially distinct environments. A study by (CARPENTER et al., 2015) demonstrated
that initial exposure of rats to multi-compartment environments resulted in grid fields
dominated by local compartments. However, with increasing experience, the discontinuities
in the grid fields between the compartments gradually reduced, forming a continuous
representation spanning both compartments. In further research by (WERNLE et al.,
2018), rats mapped two distinct environments separated by a wall, and the grid field
formed local representations of each compartment. Removing the wall rapidly adjusted the
grid field in the merged location, establishing a coherent global representation of the
environment. These findings suggest that grid cells modify their firing patterns to produce
a global model of the environment.

1.2 Learning to Navigate with Cognitive Maps

Studies on cognitive maps go beyond their acquisition and explore their role in
facilitating efficient spatial navigation and learning. Recent research has investigated the
idea of predictive maps, which are inherent in cognitive maps and capture the spatial
relationships within an environment (STACHENFELD; BOTVINICK; GERSHMAN, 2017; de
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Cothi et al., 2022; BRUNEC; MOMENNEJAD, 2022). Place cells in the brain encode not
only an animal’s current location but also future locations the animal anticipates visiting
from its current location. These relationships are learned based on environmental features
during exploration, independently of explicit motivations such as rewards. Subsequently,
the predictive relationships of places and future rewards presented in the environment can
align to build navigation trajectories, matching Tolman’s hypothesis of cognitive maps in
latent learning experiments.

Nevertheless, how the predictive maps are learned during the exploration can
significantly impact their subsequent use. In a study by Karn e Jr. (1946), they investigated
how different types of pre-exposure to a maze affected rats’ ability to find subsequent
rewards in latent learning. The rats were pre-exposed through diverse experiment designs
that included manipulations with and without exploration. Results indicated that the
latent learning experiment closely aligned with the rewarded task, i.e., stopping the
animals’ exploration when finding the empty goal compartment, was more effective in
improving learning performance. Furthermore, pre-exposure with exploratory experiences
substantially affected rewarded task performance, outperforming groups of animals that
did not explore the environment. These findings emphasize the crucial role of exploration
during cognitive map acquisition in facilitating navigation toward a goal. However, it is still
necessary to elucidate how these different experimental designs affect learning. Our
hypothesis asserts that different exploratory designs led to different representations
of predictive maps during unrewarded periods, thus impacting subsequent learning
performance.

1.3 Computational Frameworks

The study of spatial navigation in animals has enhanced the field’s understanding
and also driven the development of computational approaches to solve engineering
challenges and advance further research through computational models. One notable
application is the adoption of neuro-inspired approaches that address the Simultaneous
Localization and Mapping (SLAM) problem in mobile robots (ZENO; PATEL; SOBH, 2016;
TANG; YAN; TAN, 2018; YU et al., 2019). SLAM involves an agent constructing a map
while navigating an unknown environment and determining its position on the map
(DURRANT-WHYTE; BAILEY, 2006). RatSLAM, a neuro-inspired solution to solve SLAM,
is based on the underlying spatial navigation mechanism in the rodent’s brain (MILFORD;
WYETH; PRASSER, 2004; MILFORD; WILES; WYETH, 2010; BALL et al., 2013). It builds
experience maps by integrating visual and speed information into a conjunctive grid and
head direction cells named Pose Cell Networks. However, early versions of RatSLAM
faced challenges in handling the complexities of mapping tasks involving multiple sessions.

Reinforcement Learning (RL) has also played a crucial role in investigating how
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biological agents learn to navigate in space (TESSEREAU et al., 2021; HE et al., 2022;
DIEKMANN et al., 2023; de Cothi et al., 2022). This approach involves an agent interacting
with an environment, observing states, taking actions, and receiving feedback in the form
of rewards or punishments. Through trial and error, the agent learns to make decisions
that maximize long-term rewards by adjusting its actions based on past experiences and
observed states (SUTTON; BARTO, 2018).

The RL states of the environment are crucial for an agent’s decision-making and
learning optimal behavior by providing essential contextual information. However, dealing
with high-dimensional observations and the absence of compact state representations can
introduce complexity. To address this, state representation learning (SRL) is commonly
used as a preliminary step (LESORT et al., 2018). SRL aims to discover informative and
concise state representations. In spatial navigation, SRL can be employed through initial
task exploration (MERCKLING et al., 2022).

A central RL algorithm is the Successor Representation (SR) vastly employed in
the predictive map theory (DAYAN, 1993; RUSSEK et al., 2017; DUCAROUGE; SIGAUD,
2017; de Cothi et al., 2022). SR enables the independent learning of a predictive map of
places (or states) and the potential reward within the environment. In the SR algorithm, RL
states play a vital role as they serve as the foundation for representing the environment
and capturing its temporal dynamics. By observing state transitions, the algorithm learns
how the environment evolves and how the agent’s actions influence these transitions.
Notably, the original report of SR demonstrated its capacity to handle latent learning
simulations (DAYAN, 1993).

Recently, Diekmann et al. (2023) have developed the closed-loop simulator for
complex behavior and learning based on RL and deep neural networks (CoBeL-RL). The
CoBeL-RL includes crucial mechanisms for neuroscientific plausibilities, such as replay
and complex 3D environments. The framework is a prominent research tool, providing a
range of RL agents, including an SR implementation and tools to monitor and analyze
agent behavior. A notable feature of the framework is its flexibility, allowing modification of
its modules to incorporate new functionalities. CoBeL-RL has demonstrated a latent
learning effect in environments resembling those studied by Blodgett (1929).

Incorporating SRL methods can enhance CoBeL-RL. In spatial navigation, SLAM
solutions such as RatSLAM can handle high-dimensional information such as images and
velocities and transform them into spatially informative states such as position and
orientation while exploring unknown environments. This dimensionality reduction can
increase the efficiency of policy learning. By incorporating these capabilities, CoBeL-RL
gains the ability to examine new paradigms that balance autonomous exploration and
learning, such as artificial curiosity (PATHAK et al., 2017).
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1.4 Objectives and Contributions

This work proposes a suite of biologically inspired approaches to building spatial
maps for spatial navigation and learning. It also allows for building theoretical and
empirical bases that can be explored for robotics and behavioral neuroscience applications.
Specifically, we contribute to the following:

• Inspired by the biological mechanisms presented in (CARPENTER et al., 2015;
WERNLE et al., 2018), we expand the RatSLAM in achieving mapping across
multiple sessions, allowing virtual or real robots to build maps incrementally with
RatSLAM (MENEZES et al., 2023);

• A novel approach to automatically tuning RatSLAM parameters by optimization
processes (MENEZES et al., 2020; GOMES et al., 2022).

• Extend the capabilities of CoBeL-RL (DIEKMANN et al., 2023) by integrating
RatSLAM as an SRL to enable automatic mapping for unknown environments;

• Building on the proposed combination of CoBeL-RL and RatSLAM, we model latent
learning experiments and investigate how distinct exploration approaches during
latent learning accelerate the learning of reward locations, as observed in rats.
(KARN; JR., 1946).

Combining CoBeL-RL’s learning mechanisms with RatSLAM’s mapping abilities
has significant implications for biological studies, particularly spatial navigation. This
integration enables the design of realistic simulations that accurately model the learning
processes involved in unfamiliar environments. Additionally, it can facilitate operating
state-dependent RL algorithms such as the SR. By leveraging pre-exposure designs in
latent learning, this research contributes to a deeper understanding of how agents
navigate effectively in space. Overall, this work advances the fields of computational
neuroscience and robotics by showcasing the potential of biologically-inspired approaches
in map-building and learning.

This thesis is structured into the following chapters: Chapter 2 delves into the
theoretical foundations needed for this study. Chapter 3 provides an overview of the
relevant works related to this thesis. In Chapter 4, the methodology and results of
RatSLAM’s extension to handle multisession mapping are presented. Chapter 5 introduces
the framework that combines RatSLAM and the CoBeL-RL for mapping and learning in
unknown environments. It also investigates different pre-exposure designs and exploration
strategies in latent learning. Finally, Chapter 6 presents the conclusions drawn from this
thesis.
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2 Theoretical Foundation

This Chapter provides an overview of the theoretical foundations supporting this
work. Firstly, we provide an overview of Simultaneous Localization and Mapping (SLAM) in
mobile robotics. Next, we introduce the RatSLAM algorithm, discussing the key concepts
and principles. Thereafter, we delve into Reinforcement Learning and explore related
algorithms such as Model-free, Model-based, and Successor Representation. Lastly, we
discuss the CoBeL-RL, a closed-loop simulator of complex behavior and learning,
highlighting the main components and overall functionality.

2.1 SLAM

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in
robotics and artificial intelligence that addresses the challenge of a robot or a mobile
platform simultaneously mapping an unknown environment while estimating its position
within that map (DURRANT-WHYTE; BAILEY, 2006; THRUN, 2008). To address this
problem robustly, SLAM involves utilizing sensor measurements from various sources, such
as odometry, laser range finders, or cameras (ZAFFAR et al., 2018). This process entails
solving a sophisticated optimization problem incorporating these sensor measurements,
motion models, and probabilistic estimation techniques (THRUN, 2008). Moreover, SLAM
algorithms typically employ a combination of filtering, smoothing, or optimization methods
to iteratively refine both the map and the robot’s pose estimate, ensuring accuracy and
consistency (MONTEMERLO et al., 2003; DURRANT-WHYTE; BAILEY, 2006; GRISETTI;
STACHNISS; BURGARD, 2007).

The SLAM can be formally described in probabilistic terms (THRUN, 2008). When
a robot is on a ground surface, its position at time t is represented by two-dimensional
coordinates in the plane xt and an orientation value. The set of coordinates is defined as:

XT = x0, x1, x2, . . . , xT (2.1)

where T represents a terminal time, and the initial location x0 is unknown.

The odometry data, ut, provides information about the robot’s motion between time
t− 1 and t. This data sequence is represented as:

UT = u0, u1, u2, . . . , uT . (2.2)

Due to the accumulation of noisy measurements, odometry information becomes
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increasingly inaccurate over time. As a result, relying solely on odometry data is
inadequate for accurately reconstructing the past trajectory XT from the initial location x0.

The environment map represented as m = m1, m2, . . . , mN is assumed to be
time-invariant, modeling a static environment. If we assume the robot takes measurements
of features in m at each time point, the relationship between these measurements and the
robot’s pose xT can be expressed as:

ZT = z0, z1, z2, . . . , zT (2.3)

From the previous definitions, SLAM aims to recover m and XT from the odometry
data and environment measurements. Two primary forms of the SLAM problem are
distinguished: the full SLAM problem and the online SLAM problem. The full SLAM
problem involves calculating the probability of the robot’s pose throughout the entire path,
including the map.

p(XT , m|ZT , UT ) (2.4)

On the other hand, the online SLAM algorithms recover the current robot location
rather than the entire path. The online form is defined as:

p(xt, m|ZT , UT ) (2.5)

SLAM algorithms for online data processing are usually incremental and analyze
one data flow at a time (THRUN, 2008). Moreover, full and online SLAM algorithms employ
filtering or optimization techniques to update the distribution as new data becomes
available continuously.

2.2 RatSLAM

Milford and collaborators developed RatSLAM in 2004 as a localization and
mapping solution for mobile robots, utilizing a vision system as the primary sensor input
(MILFORD; WYETH; PRASSER, 2004). An updated architecture of RatSLAM, depicted in
Figure 2, has been proposed by Ball et al. (BALL et al., 2013). The architecture consists
of five modules to be detailed subsequently, together with the influence of RatSLAM
parameters on each module.

• The Robot Vision System is responsible for capturing images and transmitting
them to other modules.

• The Self Motion Cues module estimates translational and angular velocities based
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on robot odometry. This information is then forwarded to the Pose Cell Network and
Experience Map. Additionally, visual odometry can be computed using the images
from the Robot Vision System (Fig. 2, dashed line).

• The Pose Cells Network consists of a three-dimensional Continuous Attractor
Network (CAN) comprising units connected by excitatory and inhibitory connections.
Each cell within the Pose Cell Network represents the robot’s position (x, y) and
orientation θ.

• The Local View Cells maintain a list of view scenes, referred to as templates. A new
template is created based on whether the scene received from the Robot Vision
System is novel. An association between the template and the activity in the Pose
Cells Network is learned upon template creation.

• The Experience Map is a structured graph with Cartesian properties that serves as
a topological-metric map representation of the environment.

Figure 2 – RatSLAM architecture.

Robot Vision System

Self Motion Cues

Pose Cells Network

Local View Cells

Experience Map

Source: Designed by the author and adapted from (MENEZES et al., 2023)

2.2.1 Pose Cells Network

The Pose Cells Network (PCN), denoted as P , is a three-dimensional continuous
attractor network (CAN) that represents the robot’s position (x′, y′) and orientation θ in 2D
space (Fig. 3). The PCN units link through excitatory and inhibitory connections, extending
across all six PCN faces (red arrows in Fig. 3). This feature enables the network to operate
beyond its fixed size limitations, virtually representing environments larger than the PCN
can directly encode. Furthermore, each cell within the PCN has an associated value that
reflects its activity on the network.

Local excitatory connections enhance the activity of neighboring cells within the
PCN. On the other hand, global inhibitory connections suppress the activity of distant cells
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Figure 3 – Interconnections among the components of RatSLAM.
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or those that exhibit low levels of activity within the network. This dynamic is described by
the distribution ε (MILFORD; WILES; WYETH, 2010):

εa,b,c = e−(a2+b2)/kexc
p e−c2/kexc

d − e−(a2+b2)/kinh
p e−c2/kinh

d (2.6)

where kp and kd are the variance constants for place and direction, respectively. Additionally,
the parameters a, b, and c represent the distances between the coordinates of two cells,
taking into account the periodic boundary conditions of the network. The distance between
a cell with coordinates x′, y′, and θ and another cell with coordinates i, j, k can be
calculated as follows (BALL et al., 2013):

a = (x′ − i)(mod nx′),

b = (y′ − j)(mod ny′),

c = (θ′ − k)(mod nθ′),

(2.7)

where “mod” represents the modulo operator. The parameters nx′ , ny′ , and nθ′ indicate the
size of the network in terms of the number of cells along the X ′, Y ′, and Θ′ dimensions
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respectively. The change of activity in a cell is given by:

∆Px′,y′,θ′ =
nx′ −1∑

i=0

ny′ −1∑
j=0

nθ′ −1∑
k=0

Pi,j,kεa,b,c − φ (2.8)

where φ is the global inhibition, the final step in the network update involves constraining
the activation levels in P to non-negative values and ensuring that the total activation is
normalized to one (MILFORD; WILES; WYETH, 2010).

Over time, PCN dynamic facilitates the formation of clusters of activated cells within
the CAN, commonly referred to as “energy packets” or “activity packets” (Fig. 3, blue
cubes) (BALL et al., 2013). The center of the energy packet represents the closer
estimation of the PCN to the robot’s pose within the environment (Fig. 3, darker blue cube).
Furthermore, the energy packet’s direction changes based on odometry information.
Additionally, templates stored in LVC can inject energy into the PCN and cause the activity
packet to “jump” to a different location.

2.2.2 Local View Cells

The Local View Cells (LVC), V , build an array of templates, denoted by Vi. Each
template aims to capture a unique environment representation from the Robot Vision
System data. Moreover, when creating a template, a short learning excitatory connection β

establishes a link between it and the center of the dominant activity packet in the PCN
(BALL et al., 2013). Consequently, β links the robot’s estimated pose in PCN to the distinct
view from that location. The link is given by (MILFORD; WILES; WYETH, 2010):

βt+1
i,x′,y′,θ′ = max(βt

i,x′,y′,θ′ , λViPx′,y′,θ′) (2.9)

where lambda is the learning rate, and i refers to the activated template Vi. Moreover,
x′, y′, and θ′ indicate the PCN’s dominant energy package coordinate. Note that
βt+1

i,x′,y′,θ′ = λViPx′,y′,θ′ only if there is no prior association between the template and energy
package.

When the RatSLAM detects the robot has returned to a previously visited location,
it reactivates stored templates. This process, known as loop closure, injects energy into
the PCN at specific coordinates (x′, y′, θ′) associated with the learned link β and the
activated template Vi:

∆Px′,y′,θ′ = δ
∑

i

βi,x′,y′,θ′Vi (2.10)

where δ is the constant that determines the influence of visual features on the estimated
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robot’s pose. When the PCN receives a constant injection of activity, its dominant energy
package shifts, resulting in a corresponding change in the representation of the robot’s
position and orientation within the network (BALL et al., 2013).

2.2.3 Experience Map

The Experience Map (EM) is a structured graph that combines the PCN activity
and LVC templates to estimate robot poses in a two-dimensional map. A experience node
in the EM is defined as a 3-tuple (BALL et al., 2013):

ei = {Pi, Vi, pi} (2.11)

where pi is the robot’s pose in the experience map associated with Pi and Vi states,
respectively. The RatSLAM builds a new experience when both Pi and Vi do not closely
match with states of any existing experience. Otherwise, the experience is reactivated.

In addition, a link li,j stores distance and temporal information between the
transition from experience. The temporal information might be suitable for path planning
from a specific experience to the desired goal. For example, Dijkstra’s algorithm can be
used to find the shortest path between two nodes (BALL et al., 2013). A link built from
experiences ei to ej is defined as:

li,j = {∆pi,j, ∆ti,j} (2.12)

where ∆pi,j and ∆ti,j are the distance and time interval between the two experiences,
respectively.

The EM processes described above rely mainly on the robot’s odometry information.
However, when loop closure is detected, the robot re-localizes within the map, reactivating
a prior experience. To ensure accuracy on the experiences’ pose, an algorithm iteratively
corrects odometry errors based on the reactivated node’s position. This leads to
adjustments in the poses of past experiences, which are calculated as follows:

∆pi = α

 Nf∑
j=1

(pj − pi −∆pi,j) +
Nt∑

k=1
(pk − pi −∆pk,i)

 (2.13)

where α is a correction rate constant set to 0.5, Nf is the number of links from experience
ei to other experiences, and Nt is the number of links from the different experiences to the
experience ei.
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2.2.4 Role of RatSLAM Parameters

The RatSLAM algorithm has various parameters that affect its mapping performance
across all its modules (Tab. 1). These parameters control template operations, including
comparison, size dimensions, and conditions for creating new templates in the Local View
module. The Pose Cells module parameters determine the dynamics and dimensions of
the network, such as values for local excitation, global inhibition, and energy injection
during loop closure. The Experience Map parameters define the number of iterations for
the graph correction algorithm.

Consequently, incorrectly adjusted parameters can cause RatSLAM to malfunction,
resulting, for example, in false loop closure detection, undesirable creation of new
experiments and templates, and excessive delay in algorithm execution.

Moreover, the Self Motion Cues module (Fig. 2) provides odometry information
obtained from the Robot Vision System. The parameters must be adjusted for visual
odometry to accurately estimate the robot’s translational and rotational velocities. However,
the setting of these parameters can be omitted if alternative sources, such as wheel
encoders, provide the odometry information.

2.3 Reinforcement learning

Reinforcement Learning (RL) is a widely recognized learning paradigm that involves
an agent learning how to maximize a numerical reward signal value while interacting with
an environment (SUTTON; BARTO, 2018). Unlike other learning approaches, RL does not
depend on explicit instructions for the agent’s actions during the interaction. Instead, it
learns through experiences, engaging in a trial-and-error process to determine the
most effective choice. This type of learning is related to what has been observed in the
neuroscience field (SUBRAMANIAN; CHITLANGIA; BATHS, 2022). The concept of RL
draws inspiration from understanding how organisms learn from their environment and
adjust their behavior accordingly. Neuroscientific studies have revealed reward-related
brain mechanisms that influence decision-making and learning processes, which aligns
with the principles of RL (SCHULTZ, 2000).

2.3.1 Elements of Reinforcement Learning

The RL setup holds formalized elements (SUTTON; BARTO, 2018). First, the
learner in this setup is called the agent, which interacts with the environment over time. As
the agent interacts, it observes a series of states that represent the current conditions of
the environment. Then, the agent can choose and conduct a particular action using
the information from the current state. The agent’s action may induce changes in the
environment, and in response, the agent receives a reward as evaluative feedback for
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Table 1 – RatSLAM Parameters

Module Parameter’s Name Type

Visual Odometry

[vtrans_image_x_min,
vtrans_image_x_max,
vtrans_image_y_min,
vtrans_image_y_max]; Integer
[vrot_image_x_min,
vrot_image_x_max,
vrot_image_y_min,
vrot_image_y_max];
camera_fov_deg;
camera_hz;
vtrans_scaling;

Real
vtrans_max.

Local View Cells

vt_panoramic Binary
vt_shift_match;

Integer
vt_step_match
[image_crop_x_min
image_crop_x_max
image_crop_y_min
image_crop_y_max]
[template_x_size,
template_y_size]
vt_match_threshold;

Real
vt_normalization;
vt_patch_normalization.

Integer

Pose Cells Network

pc_dim_xy
exp_delta_pc_threshold

Real
pc_cell_x_size
pc_vt_inject_energy
vt_active_decay
pc_vt_restore

Integer
Experience Map exp_loops

its chosen behavior. Typically, a positive reward signal is linked to receiving positive
reinforcement, while a negative call is associated with obtaining a punishment. To model
and analyze the agent-environment interaction, the Markov Decision Process (MDP)
framework is commonly employed (Fig. 4).

Figure 4 – Agent-environment interaction in a Markov decision process.

Source: Adapted from (SUTTON; BARTO, 2018)
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In RL, the agent’s actions have consequences beyond immediate rewards. They
can influence the subsequent states of the environment, leading to a chain of connected
situations and impacting all future rewards. This sequential nature of RL allows the agent
to develop a long-term strategy by considering the future implications of its decisions.

To maximize the overall reward signal value, the agent prioritizes the accumulation
of rewards throughout an episode, which refers to the duration between the initiation of the
learning process and the achievement of a possible final state. A challenge arises when
the rewards in an episode are sparse, i.e., it will be presented only in the uncertain future,
making it difficult for the agent to acquire information about distant rewards in the long run.
For example, imagine an agent deciding between two actions while navigating a maze. If it
chooses to turn to the right, the agent immediately receives a small amount of positive
value as a reward. On the other hand, if it turns left, there is no immediate reward.
Nevertheless, after a few more actions, the final reward prize is considerably more
significant than the initial one.

RL agents can use value functions to address this challenge, which estimates the
total future reward an agent can expect to receive given a particular policy starting from a
specific state. The policy is a stochastic rule that guides the agent’s action selection based
on observed states, driving its behavior within the environment and specifying the
probability distribution of actions in different states.

Importantly, RL policies must deal with the exploration-exploitation dilemma, which
involves finding the optimal trade-off between exploring new actions and exploiting the
knowledge gained from previous actions. Examples of policies widely adopted in RL are
ε-greedy and softmax

The ε-greedy, policy is a simple yet effective approach where the agent selects the
action with the highest estimated value (greedy action) most of the time. However, the
agent chooses a random action with a ε (epsilon) probability to encourage exploration.
This randomness allows the agent to explore different actions and find more valuable
strategies. Conversely, the softmax policy, known as the Boltzmann exploration (SUTTON;
BARTO, 2018), assigns probabilities to each action based on their estimated values. The
probabilities are computed using the softmax function, which gives higher probabilities to
actions with higher values. However, unlike epsilon-greedy, softmax policy still assigns
non-zero probabilities to suboptimal actions, allowing the agent to explore them to some
extent.

Both policies aim to find a balance between exploration and exploitation. Epsilon-
greedy has a higher chance of exploiting the current best action while occasionally
exploring random actions. Softmax, on the other hand, explores actions proportionally to
their estimated values, providing a softer exploration strategy. Ultimately, RL aims to
find an optimal policy, allowing the agent to make the best decisions in each state by
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maximizing the expected long-term reward. We formalize the value function of a state V (s)
under the policy π as follows:

Vπ(s) = Eπ[
∞∑

t=0
γtRt|s0 = s] (2.14)

where Eπ represents the expected value of a random variable when the agent follows a
specific policy π, and the variable t is any time step. The γ ∈ [0, 1] is the discount factor,
impacting the ratio between immediate and future rewards in the agent’s decision-making
process. When γ = 0, the agent prioritizes immediate rewards. On the other hand,
when γ = 1, future rewards become more significant, motivating the agent to maximize
cumulative rewards over time and prioritize actions that yield long-term advantages. The
value for the discount factor depends on the specific problem. A lower γ is suitable for
tasks where immediate rewards are critical, such as environments with rapid changes. On
the other hand, a higher γ is appropriate for tasks involving long-term planning and
significant implications of delayed rewards.

In addition to value functions, the RL framework extends this concept to action-value
functions, also known as Q-values and denoted as Qπ(s, a), which incorporate the actions
taken by the decision-making agent. Q-values estimate the expected cumulative reward
that the agent can achieve by taking a specific action a from state s and subsequently
following a particular policy π. Unlike value functions, which focus only on states, Q-values
measure the long-term potential and immediate rewards of choosing a particular action in
a given state:

Qπ(s, a) = Eπ[
∞∑

t=0
γtRt|s0 = s, a0 = a] (2.15)

2.3.2 Model-free and Model-based RL

In RL, two fundamental approaches can be employed for an agent to learn a given
task. The first, model-free RL, involves learning the optimal policy directly through
a trial-and-error scheme, updating the value or action-value functions at each new
experience. Alternatively, RL can use models of the environment to predict the outcomes
of its actions and select the action that yields the best result. By leveraging an internal
model, the agent can plan over potential paths. In the second approach, known as
model-based RL, actions are chosen based on predictions made by a model. This model
anticipates the outcomes of different actions regarding future states and the corresponding
expected rewards (SUTTON; BARTO, 2018).
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Both approaches have their advantages and trade-offs, with model-free algorithms
offering fast learning but limited ability to plan in case of changes in the environment and
model-based RL providing planning capabilities but requiring an accurate model of the
environment.

Model-free RL

In model-free RL, the agent learns to make decisions and improve performance
through trial-and-error experiences. This method focuses on learning without building
an explicit model of the environment. Instead, the agent directly interacts with the
environment, obtains rewards for its actions, and adjusts its policy accordingly. Model-free
agents depend on value functions to evaluate and update the current policy over new
experiences since they measure the value of expected future rewards for the following
states and guide the agent’s decision-making process. The Bellman equation states the
decomposition of a current state value V (st) in terms of the expected reward (rt) and the
value associated with the next state, as can be seen in:

V (s) = E[rt + γrt+1 + γ2rt+2 + γ3rt+3] (2.16)

= E[rt + γV (st+1)] (2.17)

One critical component of model-free RL is the capability to update the value
function as the agent gains additional experience. The value function is iteratively adjusted
using the temporal-difference (TD) learning rule. This rule involves comparing the
predicted outcomes of actions with the actual observed results and updating the value
estimates accordingly (SUTTON; BARTO, 2018):

V (s)← V (s) + α[rt + γV (st+1)− V (s)] (2.18)

where V (s) represents the value estimate for state s, rt is the reward received at time step
t, α is the learning rate, and γ is the discount factor that balances the importance of
immediate and future rewards.

Furthermore, model-free RL can employ on-policy and off-policy methods for
learning and updating the agent’s policy. On-policy algorithms involve learning the value
function or policy based on the data collected by the agent while following its current policy.
The updates are directly based on the actions taken by the agent during its exploration. In
contrast, off-policy methods enable the agent to learn and update its value functions and
policy using data generated by a different policy. This means that the agent can leverage
experiences collected under a different exploration policy to improve learning. One notable
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example of an off-policy algorithm is Q-learning, which updates the Q-values by estimating
the maximum expected future rewards for each state-action pair. The update rule in
Q-learning involves selecting the maximum Q-value (maxaQ(st+1)) for the next state,
regardless of the action selected by the policy and taken by the agent (Eq. 2.19).

Q(s, a)← Q(s, a) + α[rt + γmaxa′Q(st+1, a′)−Q(s, a)] (2.19)

In large state or action spaces, function approximation techniques are often used to
approximate the value function or Q-values (SUTTON; BARTO, 2018). Deep Q-Network
(DQN) is a well-known model-free RL algorithm that combines Q-learning with DNN (MNIH
et al., 2015). It leverages a neural network to approximate the Q-values. It employs an
experience replay mechanism, where past experiences. During learning, batches of
experiences are randomly sampled from the replay buffer. Furthermore, DQN employs a
form of epsilon-greedy exploration, i.e., the agent explores the environment by randomly
selecting actions. As the agent’s training progresses, it gradually shifts towards exploiting
its knowledge by selecting actions with the highest estimated Q-values.

Model-based RL

Model-based RL involves learning a model that captures the dynamics of the
environment or the underlying process controlling the agent’s interactions. This model
enables the agent to simulate different outcomes resulting from its actions, facilitating
selecting the action that maximizes the expected return. This approach is particularly
effective in simple and predictable environments. However, as the state/action space
expands, predicting each outcome becomes increasingly challenging and computationally
intractable.

The model employed in model-based RL can be stochastically designed to address
the inherent randomness and uncertainty of the real scenarios. In this scenario, the
environment may respond to actions in numerous ways, each with its probability of
occurrence and allowing the agent to make robust and adaptable decisions to the dynamic
nature of the environment. Moreover, the learned model’s accuracy significantly impacts
the model-based RL’s effectiveness. If the model inaccurately represents the actual
dynamics of the environment, it can lead to suboptimal decision-making by the agent.

One of the simplest yet general ways to represent a valuable model of the
environment is through the state transition probabilities. Mathematically, the state transition
probability, denoted as P (s′|s, a), represents the likelihood of transitioning from state s to
state s′ when taking action a. It can be formulated as follows:

P (s′|s, a) = Pr[st+1 = s′|st = s, at = a], (2.20)
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where st and at are the state and action at time t, respectively. Alternatively, a one-step
transition matrix can define the environment model through state transition probabilities.
This representation, T (s, s′) = Pr(st+1 = s′|st = s), is a square matrix with each row
representing a state s and containing the probabilities of transitioning to state s′ in a single
step. The sum of probabilities in each row,

∑
s′ T (s, s′), adds up to 1, ensuring a valid

transition model.

The one-step transition matrix can be used for sample model-based planning
procedures. This approach involves generating single or multiple trajectories by iteratively
sampling actions according to the policy dictated by T and observing the resulting states.
The sample model-based planning usually involves iteratively updating the estimates
based on new samples and refining the policy accordingly. This iterative improvement
allows the agent to learn from simulated experiences and adjust its decision-making
strategy for better environmental performance.

Another approach is to approximate the value function directly using T to avoid the
excessive computational overhead associated with model-based planning. The Successor
Representation method uses T to build a predictive map of the environment.

2.3.3 The Successor Representation

The Successor Representation (SR) algorithm, introduced by Dayan (1993),
captures the expected future visits of states to facilitate learning. It offers an alternative
perspective on modeling the environment dynamics compared to traditional methods
focusing on explicit transition models, such as model-based algorithms. Rather than
explicitly modeling state transitions, the SR algorithm aims to understand the underlying
dynamics of the environment by storing information about the expected future visitation of
states from the current state.

The SR algorithm builds a matrix, M , to track estimations. Given a known state
transitions matrix of the environment T , M is computed as a discounted sum over T

raised to the time step t:

M = I + γT + γ2T 2 + γ3T 3... (2.21)

=
∞∑

t=0
γtT t (2.22)

where γ dictates the temporal discounting of future state occupancy. Each row of the
matrix represents the expected visitation frequencies of all states given the current state.
By updating this matrix during the learning process, the SR agent accumulates knowledge
about the likely future states it will encounter.
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To illustrate the concept, let us consider a grid world scenario with an SR agent
represented as a circle and a reward represented as a star (Fig. 5). The blue light in the
top-right frame indicates the agent’s current state in the 2D space. Based on its current
policy, the agent can gain insights into the expected discounted visits to other states
using the SR algorithm. Therefore, the occupancy predictions for future states will vary
depending on the chosen policy. For a randomly uniform exploration policy, the occupancy
predictions for the current state will resemble the lower-left frame. However, if the agent
follows a policy that maximizes the reward, the occupancy prediction of future states will
align with the lower-right frame. Single arrays below each matrix represent the state row in
M .

Figure 5 – SR occupancy grid.
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The value function for a state V (s) can be define as the multiplication of the SR
matrix M(s, s′) with the environment’s reward function R(s) (STACHENFELD; BOTVINICK;
GERSHMAN, 2017):

V (s) =
∑
s′

M(s, s′)R(s′), (2.23)

where M(s, s′) encodes the expected discounted future occupancy of state s′ along a
trajectory initiated in state s:
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M(s, s′) = E[
∞∑

t=0
γtI[st = s′]|s0 = s] (2.24)

I[.] = 1 if s′ is reachable from st and 0 otherwise.

The SR is independent of the reward function, enabling rapid adaptation to
changes in the environment’s reward structure. Thus, the agent only needs to relearn the
new reward function R(s) while maintaining the existing SR M , resulting in fast integration
of updated reward signals. By separating the representation of the environment from the
reward function, the SR facilitates efficient learning and decision-making in dynamic
environments. Moreover, as the agent acquires new experiences over interactions, M and
R(s) are updated with temporal-difference learning rules. Consider the agent goes from
st → st+1 and receives reward r, then the agent can implement the learning rules:

M(st, s′)←M(st, s′) + α[Is + γM(st+1, s′)−M(st, s′)] (2.25)

R(s′)← R(s′) + α[r −R(s′)] (2.26)

where α is a defined learning rate.

Furthermore, Deep Successor Reinforcement Learning (DSR) (KULKARNI et al.,
2016) offers a function approximation method for learning the successor representation
algorithm. To do so, DSR enables the estimation of the successor representation (SR) and
reward function by DNN with raw sensory observations as input. DSR computes the inner
product between the SR and predictions of immediate rewards to estimate the value
function.

2.4 CoBeL-RL

The “Closed-loop simulator of Complex Behavior and Learning based on
Reinforcement Learning and deep neural networks”, or CoBeL-RL for short, is a
neuroscience-oriented framework for efficiently setting up the closed-loop interaction
between an agent and an environment (Fig. 6). It focuses on trial-based experimental
designs, and each trial is further differentiated into agent-environment interactions referred
to as steps. Each step yields an experience tuple (s, a, r, s′), which the agent can learn
directly from or store in a memory structure for later learning.

CoBeL-RL has been structured to integrate modules that allow large flexibility in
building different learning setups. These modules are Environment, Agent, and Utility.
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Figure 6 – The CoBeL-RL architecture.

Source: Adapted from (DIEKMANN et al., 2023)

2.4.1 Environment Module

CoBeL-RL offers two types of environments: simple implementations, such as grid
worlds, and complex environments rendered by popular game engines like Blender Game
Engine (Blender Online Community, 2018), Godot (LINIETSKY; MANZUR, 2007), or Unity
(Unity Technologies, 2005). CoBeL-RL also includes additional modules such as the 3D
simulator module, an observation module for preprocessing observations, and spatial
representation modules for navigation to facilitate interaction with the game engines.

The CoBeL-RL’s spatial representation module enhances agents’ navigation
capabilities within the environment by using a simplified spatial representation rather than
relying on continuous physical movement. Currently, it creates a topological graph of
the environment, where nodes represent distinct locations and edges establish their
connectivity. Users can manually define the topological graph using the Blender Game
Engine (BGE) or automatically generate it using the grid graph module.

Furthermore, the spatial representation module also defines the agent’s action
space and specifies how actions correspond to transitions on the graph. The default
topological graphs in CoBeL-RL support two transition modes. The first mode, "without
rotation," limits transitions to neighboring nodes exclusively. In this mode, agents can move
between adjacent nodes without rotational movement. The second mode, referred to as
“with rotations”, permits both translational and rotational movements on the graph.

The observation module in CoBeL-RL provides functionality for preprocessing
environment observations before transmitting them to the RL agent. This module retrieves
the agent’s x-y position coordinates and current heading direction in its simplest form. The
RL agent can utilize these values independently or with visual observations. Additionally,
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the observation module preprocesses visual observations, including resizing them to a
user-defined size and normalizing pixel values within the [0, 1] range, enabling efficient
transmission to the agent.

The observation module can additionally introduce various types of noise, such as
Gaussian noise, to capture the inherent imprecision found in biological observations.
This feature enhances the realism of the learning environment, enabling the RL agent
to adapt and learn from noisy sensory inputs. Furthermore, the observation module
supports combining two or more observations, allowing for the simulation of multisensory
observations.

The 3D Simulators module bridges the CoBeL-RL framework and game engines to
enable simulation and rendering. This module facilitates communication between the
framework and game engines via web sockets. CoBeL-RL supports three game engines
for simulation and rendering: BGE, Unity, and Godot.

For a particular interest in this study, we delved into the BGE Simulator. The default
BGE Simulator module utilizes three web sockets for communication. The control socket
handles the transmission of commands and retrieval of relevant control data, such as
object identifiers. Commands are encoded as strings and follow a comma-separated
format, containing the command name and corresponding parameter values. Likewise,
retrieved values are received in string format and are separated by commas. Visual
observations are obtained through the video socket, while sensory data is retrieved via the
data socket. Finally, a new Blender process is launched during module initialization, and a
user-defined Blender scene is opened.

2.4.2 Agent Modules

The RL agents are implemented via the Agent modules that define their behavior,
including learning, exploration strategies, and memory. All agents inherit from a common
abstract RL agent class and must implement functions for training, testing, and computing
predictions for a given batch of observations (DIEKMANN et al., 2023). Callbacks are also
implemented by agents to allow for fine-grained control during simulations. Information
such as the number of trial steps and rewards are collected by the agents and passed to
the callbacks. Custom callback functions can be defined by the user and passed as a
dictionary to the RL agent.

RL agents in CoBeL-RL can use the experience replay (LIN, 1992; MNIH et al.,
2015) as part of the learning algorithm. These agents are connected with different memory
modules that operate as buffers for experience replay. Experience tuples are stored in the
memory modules, providing the possibility of building up a history of experiences, which
are used for training. Agents and memory modules can be freely combined to study the
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effects of different replay models.

Here, we mention four available agents in CoBeL-RL: DQN agents, Dyna-Q, and
hybrid Dyna-DQN and DSR agents.

DQN agent

DQN agent encapsulates Keras-RL2’s implementation. It uses a small, fully
connected DNN by default and follows an epsilon-greedy policy. There are also versions of
DQN that implement Prioritized Experience Replay (SCHAUL et al., 2016) (PER-DQN)
and learn an environmental model.

Dyna-Q agents

The Dyna-Q model (SUTTON; BARTO, 2018) is implemented as a tabular agent.
In this approach, the agent’s Q-function is represented as an array with a size of |S| × |A|,
where |S| denotes the number of environmental states and |A| represents the number of
available actions. Since this agent relies on a tabular representation, it can only be used in
discrete static environments where states are represented as abstract indices, such as
the grid world interface. The memory module is responsible for storing and retrieving
experiences. Users can choose between an epsilon-greedy policy (the default) or a
softmax policy for action selection.

Additionally, an optional action mask can exclude actions that do not result in a
state change from the selection process. Moreover, the agent’s Q-function is updated
online with each step and can be updated via experience replay. Experience replay can be
performed after each step, after each trial, or can be disabled altogether.

Dyna-DQN and DSR agents

CoBeL-RL introduces hybrid agents, specifically Dyna-DQN, which combine
elements from the Dyna-Q agent and DQN. The DQN agent does not rely on the
Keras-RL2. Instead, it can be implemented separately using TensorFlow 2 or PyTorch. The
agent can receive a set of observations corresponding to discrete environmental states. If
no observations are defined, a one-hot encoding of the environmental states is generated
as the observations.

Furthermore, CoBeL-RL provides a hybrid agent called Dyna-DSR, which
implements a variation of Deep Successor Reinforcement Learning (DSR) (KULKARNI et
al., 2016) and bases our RL agents in the next chapters. However, unlike the DSR, the
Dyna-DSR does not learn a separate feature representation of its observations. Instead,
reward and SR models are trained directly on the observations. The resulting learned SR
is called the deep successor representation (Deep SR).
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2.4.3 Analysis Modules

The CoBeL-RL’s Utility proved useful modules for monitoring, environment editing,
and analysis of simulation variables, e.g., behavior and learning progress. These tools
offer the capability to display and store important metrics in RL, such as the escape
latency (the number of steps required to complete a trial), cumulative reward attained in
each trial, responses emitted by the agent in each trial or step, and the trajectory of the
agent. Additionally, for Deep RL agents, the response monitor can track the activity of units
within the layers.

Furthermore, the environment editing feature allows users to create grid world
environments by manually defining relevant variables, such as size, starting states, and
reward functions. Alternatively, users can utilize templates for specific instances of grid
world environments, such as an open field with a single goal location.

2.5 Summary

This chapter overviewed the fundamental concepts necessary to comprehend this
work. We began by introducing the basics of SLAM and followed with a comprehensive
explanation of RatSLAM and its structures. We delved into the Reinforcement Learning
paradigm, discussing its key elements and introducing the distinction between model-free
and model-based methods. Additionally, we presented the successor representation,
which is the foundation for the agents employed in this study. Lastly, we introduced
CoBeL-RL, on which this study’s proposed framework is built.
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3 Related Works

This chapter offers a literature review relevant to the doctoral thesis. We initially
investigated studies on spatial map construction using neuro-inspired frameworks, with a
specific focus on RatSLAM. Furthermore, the challenges RatSLAM faces in building maps
in various SLAM sessions are discussed. Subsequently, we discuss how the brain
may encode cognitive maps to facilitate adaptable behavior based on computational
frameworks that show latent learning effects to facilitate adaptive behavior. Finally, an
analysis is performed to assess the influence of various exploration design strategies on
acquiring cognitive maps and their impact on learning speed in spatial navigation tasks.

3.1 Building Maps with Neuro-Inspired Frameworks

The mentioned neurological processes have inspired building neuro-inspired
computational frameworks to solve real-world problems such as SLAM and understanding
the underlying navigation processes in animals’ brains through these models (YU et al.,
2019; TANG; YAN; TAN, 2018; WANG; YAN; TANG, 2021; MILFORD; WILES; WYETH,
2010). In particular, we mention frameworks that build cognitive map models based on
the integration of head direction cells and grid cells to perform path integration in 2D
(MILFORD; WYETH; PRASSER, 2004; ZENG; SI, 2017; ZENG et al., 2020; WANG; YAN;
TANG, 2021), or 3D SLAM (YU et al., 2019). Moreover, these algorithms rely on visual
signals to adjust the robot’s route when faced with inaccurate inputs when calculating path
integration and performing loop closure. Ultimately, they combine the spatial information in
a graph-like representation with a semi-metric relationship, which corresponds finds on the
cognitive maps’ underlying structure in the spatial context (PEER et al., 2021).

Our work focuses on RatSLAM, a well-known SLAM solution developed by
Milford, Wyeth, and Prasser (MILFORD; WYETH; PRASSER, 2004; BALL et al., 2013)
that incorporates visual sensing, robot movement, and pose cells, a 3D Continuous
Attractor Network (CAN), to accurately estimate the robot’s position and orientation during
exploration. Continuous Attractor Network operates similarly to the conjunctive grid and
head direction cells. RatSLAM selectively activates specific regions within the CAN by
integrating visual information and odometry data. The algorithm builds an “Experience
Map” combining visual input and CAN activity to represent the robot’s path traveled in the
environment.
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3.2 The Multisession Problem for RatSLAM

RatSLAM has demonstrated successful performance in both indoor and outdoor
SLAM tasks (PRASSER; MILFORD; WYETH, 2006; MILFORD; WYETH, 2008; MILFORD;
WYETH, 2010; MENEZES et al., 2018; TANG; YAN; TAN, 2018; BALL et al., 2013).
However, further development is still needed to enhance its capabilities in handling complex
mapping scenarios, including creating a consistent global map across distinct environments
(WERNLE et al., 2018). This challenge is closely associated with multisession SLAM,
where robots conduct mapping across multiple sessions.

Multisession SLAM becomes crucial when mapping an entire environment in a
single session becomes impractical, especially in expansive environments or when robots
experience shutdowns followed by subsequent restarts. Moreover, multisession SLAM
provides valuable solutions for addressing tracking failures that may occur in visual SLAM
due to sensory occlusion.

In multisession SLAM approaches, the robot may initiate a new session from a
random position in the environment and accurately incorporating this new position into the
previously created map poses a significant challenge, commonly known as the “kidnapped
robot” problem (MCDONALD et al., 2013; LABBÉ; MICHAUD, 2018). To address this
problem, Labbé e Michaud (2018) propose two potential solutions: (i) the robot localizes
itself on the existing map before starting the new session, or (ii) the robot begins mapping
at the new location using its reference coordinates and subsequently merges this new map
with the previously created maps to generate a unified representation. This work primarily
focuses on the latter solution, investigating methods to effectively integrate the maps from
different sessions into a cohesive and accurate representation.

Milford and Wyeth demonstrated using RatSLAM in multiple environments for
autonomous mapping in their work (MILFORD; WYETH, 2010). Their robot performed
delivery tasks for two weeks in different physical locations. It also can be moved between
these locations without prior notification. When the agent moves to a new environment for
the first time, it tries to locate itself on the previous map. If it fails to do so, RatSLAM
creates a new Experience Map for the new location. The new map has the same RatSLAM
structure but is topologically separate from the first map. This method keeps multiple local
maps in the same RatSLAM structure, but if there is only one connection between them,
the map can deform due to false metric representation. Therefore, this solution does not
solve the multisession scenario stated in (ii).

In recent work, Tang, Yan e Tan (2018) developed a navigation system that
uses the relationship between the hippocampus and episodic memory to help mobile
agents complete multistep tasks. This approach uses RatSLAM as the hippocampus’s
spatial navigation mechanism and episodic memory to recall the steps of a given task.
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Furthermore, the researchers proposed an enhancement allowing the robot to achieve
global localization within familiar areas. In their global localization module, the system
addresses the “kidnapped robot” by allowing it to shut down and restart randomly within
the environment. After restarting and turning on the global localization module, RatSLAM
utilizes the robot’s visual input to determine whether the current location matches any
mapped area information. Instead of generating new experiences as it would with new
visual input, RatSLAM compares the visual information with that stored in the map. This
approach aligns with scenario (i) mentioned earlier. However, this solution only works
effectively when the robot restarts within a previously mapped area. As a result, the robot
cannot explore distinct regions in multiple sessions when operating in global localization
mode since no new experiences are created in this new environment. Consequently, it
does not address the multisession scenario (ii).

While RatSLAM itself does not provide a complete solution for multisession
mapping, there have been efforts to address this challenge in other non-biological SLAM
frameworks (MCDONALD et al., 2013; LABBé; MICHAUD, 2014; WANG et al., 2016;
LABBÉ; MICHAUD, 2018; DAOUD et al., 2018; SCHNEIDER et al., 2018; BURGUERA;
BONIN-FONT, 2019; CAMPOS et al., 2021; LABBé; MICHAUD, 2022). Two notable
examples are SLAMM (DAOUD et al., 2018) and ORB-SLAM 3 (CAMPOS et al., 2021),
which tackle the multisession scenario by initiating a new map when tracking is lost. These
solutions continuously compare new inputs with those from different stored maps and
perform loop closures based on whether the information belongs to the “active” map or
another map. If it belongs to another map, the two maps are merged, creating a new
"active" map. This merging process involves aligning the matched inputs and integrating
the information from the current map into the stored one.

Overall, previous approaches have addressed multisession mapping either in
non-biological SLAM frameworks or only partially for RatSLAM, such as the work by
(TANG; YAN; TAN, 2018) for scenario (i). This work focuses on an approach that mutually
solves scenario (i) and the more challenging scenario (ii). However, to comprehensively
deal with the multisession challenge in RatSLAM, a solution must consider the RatSLAM
structures and their intrinsic relationship. For instance, reactivating a RatSLAM experience
on the map requires correctly activating the visual input and the CAN related to that
experience. Building multisession solutions for RatSLAM, particularly for its network,
presents unique challenges.

In this context, we propose a novel approach to merge the RatSLAM Pose Cell
Network, ensuring the consistency of the Experience Map and performing accurate loop
closures following the merging of RatSLAM structures. Existing literature has yet to
extensively explore this aspect, making our proposed solution a valuable contribution to
the field. The development of the multisession solution for RatSLAM is found in Chapter 4.
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3.3 Learning Cognitive Maps for Flexible Behavior

Latent learning has been a topic of great interest in neuroscience for nearly a
century. Behavioral studies have shown that this learning benefits animals in seeking
rewards more quickly when familiarized with the empty environment than those with no
previous experience but rewarded from the start (BLODGETT, 1929; TOLMAN; HONZIK,
1930). The initial focus of researchers was to elucidate if animals exhibit adaptive behavior
through stimulus-response or cognitive map theories (BLODGETT, 1929; TOLMAN, 1948;
SUTHERLAND; LINGGARD, 1982; SUTHERLAND et al., 1987; KEITH; MCVETY, 1988).
They also studied the brain regions responsible for facilitating this type of learning
(KIMBLE; GREENE, 1968; KIMBLE; BREMILLER, 1981; MEANS, 1969; OWEN; BUTLER,
1980; KIMBLE; JORDAN; BREMILLER, 1982). Recent studies have explored latent
learning experiments in analyzing neural activity in animals’ spatial and non-spatial
decision-making tasks (GUO et al., 2020; BARROS et al., 2021).

Blodgett (1929) introduced the concept of latent learning through his experiments
with rats in a maze. His study divided the rats into one control and two experimental
groups. The control group received rewards for successfully navigating the maze from the
first day, while the experimental groups were only rewarded after the third and sixth days.
Blodgett observed that the control group consistently improved their performance over
time, with a decreasing number of errors in subsequent trials. In contrast, the experimental
groups showed no evidence of learning during the unrewarded days. However, both
groups exhibited a rapid decrease in errors once rewarded, indicating that learning had
taken place latently during the non-rewarded trials. Hence, when comparing maze running
performance, latent learning refers to the significant performance improvement of a
“rewarded” group compared to other groups that underwent "unrewarded" trials during the
exploration phase (THISTLETHWAITE, 1951).

Tolman and Honzik made further investigations into latent learning (TOLMAN;
HONZIK, 1930; TOLMAN, 1948) and showed that rats also improved learning after
becoming familiar with an even more complex 14-arm T-maze (Fig. 7a,b). The rats were
divided into three groups: the rewarded, unrewarded (control), and the late rewarded group.
The rewarded group received food rewards at the end of the maze, leading them to learn
and navigate efficiently. On the other hand, the unrewarded group received no rewards,
serving as a control group to compare against the other two groups. The late rewarded
group received no rewards for the first ten days but was later reinforced with food rewards.
Similar to the findings observed by Blodgett, the late-rewarded group demonstrated
notable improvement in locating the reward within the maze despite no evidence of
learning before the introduction of rewards. Furthermore, the researchers conducted
experiments in which rats were guided to follow a specific route leading to a reward
location (Fig. 7c). Subsequently, new accessible routes were introduced after blocking the
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learned one. Interestingly, most animals chose the arm whose direction and distance were
closest to the former reward location (Fig. 7d). These experiments supported the theory
that the animals acquired a cognitive map and could internally compute novel routes using
their knowledge of the distance and direction to the reward location.

Figure 7 – Tolman’s experiments in latent learning.
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In addition to the evidence supporting the formation of cognitive maps in latent
learning experiments, research suggests that replay mechanisms (PAVLIDES; WINSON,
1989; KARLSSON; FRANK, 2009) play a crucial role in the consolidation and utilization of
these maps (ÓLAFSDÓTTIR; CARPENTER; BARRY, 2016; POULTER; HARTLEY;
LEVER, 2018; MOMENNEJAD, 2020; SCLEIDOROVICH et al., 2020; DIEKMANN;
CHENG, 2023). One is awake replay (KARLSSON; FRANK, 2009), where place cells
where observed to reactivate during spatial navigation, both in the forward direction
(before actual movement) and in the reverse direction (after task completion). In a recent
study, Guo and colleagues reported a potential role for replay from rest periods in
consolidating learning between different places in an environment (??). In the absence of
rest, animals’ spatial representations tend to disintegrate from the spatial environment’s
structure, a phenomenon not observed in animals that take regular rest breaks.

Latent learning experiments yet raise a crucial question about how cognitive
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maps are encoded in the brain, particularly concerning animals exhibiting flexible
behavior in response to rewards. A prominent explanation is provided by the predictive
map hypothesis, which asserts that animals acquire the ability to anticipate long-term
rewards by predicting their future locations (or states) based on their current position
(STACHENFELD; BOTVINICK; GERSHMAN, 2017; GERSHMAN, 2018). According to this
hypothesis, place cells encode predictions of future states, which illustrates why the firing
patterns of place cells are modulated by factors such as obstacles and environmental
topology (STACHENFELD; BOTVINICK; GERSHMAN, 2017). Furthermore, the predictive
map perspective is formulated within the Reinforcement Learning paradigm, wherein the
Successor Representation algorithm (DAYAN, 1993) is employed to capture the underlying
mechanisms of predictive maps.

Several studies have explored Successor Representation (SR) as an alternative
framework for understanding flexible behavior. Gershman (2018) provides a comprehensive
review of behavioral and neural studies that support the SR structure. Russek et al. (2017),
de Cothi et al. (2022), Ducarouge e Sigaud (2017) investigate the SR as a model of
behavioral flexibility, comparing it with other RL algorithms such as model-based and
model-free approaches. Notably, Ducarouge e Sigaud (2017) revisit experiments on latent
learning using the SR in Blodgett’s maze (BLODGETT, 1929).

However, a significant challenge for the RL and thereafter for the SR lies in defining
states for the algorithm to predict their relationships accurately. This may be necessary in
situations where the explicit definition or pre-definition of states in an environment is
challenging or impractical. Moreover, states can be acquired from raw data, which may
introduce complexity if they are sparse or have high dimensionality. One approach
involves pre-defining states before simulations, which requires modeling the dynamics of
the environment as an additional task. Otherwise, an alternative method is to utilize
State Representation Learning (SRL) (LESORT et al., 2018) techniques, which aim to
autonomously learn and represent states based on the available sensory information or
observations.

This work presents a framework integrating two fundamental processes, mapping
and learning, within the CoBeL-RL (DIEKMANN et al., 2023) framework. Our extension to
CoBeL-RL allows RL agents to learn in unfamiliar environments using RatSLAM as
an SRL. RatSLAM allows the agent to differentiate between different locations in the
environment, relying on its pose cells network. This capability allows the agent to learn
from an unknown condition of the states of the environment, filling a gap in existing works
that assume that learning starts totally or partially with pre-defined states. Moreover, by
applying this framework to the study of latent learning, we aim to gain novel insights into
the mechanisms that underlie flexible behavior in spatial navigation and cognitive maps.
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3.4 Experimental Designs in Latent Learning

A relevant question regarding latent learning is whether this learning depends on
specific environmental or behavioral conditions and constraints during the learning
process. An example is the use of doors to guide animal trajectory and modify their
exploration strategy within mazes, as explored by Tolman (TOLMAN, 1948). Daub
(1933) analyzed this impact on maze performance. The animals in the experiment were
divided into four distinct groups: two groups were exposed to an environment featuring
doors, further categorized into latent and standard subgroups, while the remaining two
groups were devoid of doors, consisting of latent and standard subgroups. In the maze
pre-training phase, latent door and no-door groups were allowed to freely explore a 14-T
maze for eight hours daily without any food or restrictions imposed by the doors. Thus, the
animals had unrestricted movement during this period. Each animal received a daily trial to
run the maze in the reward phase. In this evaluation period, the doors were closed behind
the animals for the door groups every time they passed, preventing them from retreating.
The results indicated a significant difference in both time and error scores between the
latent learning and the standard groups, with the latent without doors showing the lowest
error scores. Interestingly, the presence of doors did not significantly impact scores for
either latent group. Nevertheless, it is important to mention that both latent learning groups
had the same pre-exposure regime, i.e., they explored the environment without doors. This
condition might have influenced them to exhibit similar learning scores.

Latent learning experiments also offer various design prospects that may impact
animals’ understanding of spatial relationships within their environment and how they build
cognitive maps. A literature review by Thistlethwaite (1951) categorized different types of
latent learning designs employed during the maze pre-training phase. The first type
involved a single attempt to explore the environment. The second type included brief
periods of exploration and living in an empty maze, followed by introducing a relevant goal
object and subsequent test trials. The third type includes trials where rats navigated a
maze with pre-satiated target objects, followed by additional tests after inducing hunger or
thirst. Lastly, the fourth type consisted of tests conducted with hungry or thirsty rats in a
maze containing relevant and irrelevant goal objects. Notably, the reports reviewed
consistently demonstrated the presence of latent learning across all these experimental
designs.

Within this study’s scope, we focus on the first two types of latent learning design
experiments. The single attempt (or single trial) exploration is characterized by establishing
a relationship between the goal location and changing the animal’s state during exposure,
such as removal from that location and confinement upon arrival. Moreover, building a
connection to the goal location can also be achieved by placing the animal at the goal
location. In contrast, the second type, time-fixed exploration, does not involve such a
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connection to the goal location, as it does not provoke changes in the animal’s state at this
place. Instead, the animal is removed from its current position once the allotted time limit
expires.

Karn e Jr. (1946) conducted experiments to investigate differences in maze
performance over different experiment designs. Specifically, they examined the influence of
various pre-training experiments on latent learning to assess rat performance in finding
food using a Dashiell maze. The animals were exposed to different conditions, including
familiarity with handling, confinement, and exploratory type one and two experiences. The
results demonstrated that the pre-training design closest to the rewarded task, i.e.,
single-trial exploration, had a more pronounced effect on improving task performance.
Furthermore, exploratory maze experiences significantly impacted animals’ latent learning,
overcoming the effects of pre-training without exploration.

In an additional investigation by Sutherland e Linggard (1982), the latent learning
performance of rats was assessed through different types of exposure before training in
the Morris water maze (VORHEES; WILLIAMS, 2006). The rats were divided into three
groups: one group received exposure to the correct platform location, another was exposed
to an incorrect location, and the third was exposed to the correct location but in a different
room (naive group). During the training trials, each rat had a brief 30-second swimming
period before being placed on the platforms. Subsequently, they were given a 10-minute
timeframe to complete the task during the reward trials. Results demonstrated that the first
group quickly learned the task, while the second group took longer to find the platform than
the naive group. However, once learned, the second group outperformed the naive group.

The findings from (KARN; JR., 1946; SUTHERLAND; LINGGARD, 1982) indicate
that pre-training strategies that closely resemble the rewarded task, such as single trial
exploration, significantly influence rat performance more than time-fixed exploration in
latent learning. Furthermore, these findings emphasize the role of exploration in facilitating
efficient navigation toward a goal during cognitive map acquisition. On the other hand, lack
of exploration or exploration in different environments during pre-training does not
significantly affect latent learning.

In conclusion, the design of latent learning experiments plays a crucial role in
influencing the rate at which animals learn when a reward is introduced. In this study, we
investigate the underlying reasons for these differences observed in latent learning.
We hypothesize that the variations in exploration designs result in distinct learned
representations of the environment, ultimately impacting the learning speed between
single trial and time-fixed exploration. Consistent with the earlier findings, the studies
emphasize the necessity of some exploration to observe the latent learning effect.
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3.5 Summary

This chapter focuses on the challenges associated with navigating and learning
in unfamiliar environments. We introduce the RatSLAM, a computational cognitive
model that tackles the complex task of mapping and merging maps from multiple
sessions. Furthermore, we delve into latent learning and examine current studies in
reinforcement learning setups to shed light on how cognitive maps may be encoded in
the brain. In addition, we explore studies that show the impact of various exploration
strategies during the unrewarded phase on learning speed. The findings from these works
indicate that exploration strategies closely aligned with the critical rewarded run lead to
significant improvements in learning compared to uniform unrewarded exploration or
limited exploration.
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4 A Multisession Approach for RatSLAM

This chapter presents our proposed approach’s methodology and results to
enhance RatSLAM mapping capability across multiple SLAM sessions. We address the
type (ii) multisession solution, where the robot initiates mapping in a new location using its
reference frames and coordinates, subsequently integrating this map with previously
stored ones. We have applied this method to diverse environments, ranging from small
virtual to large-scale real-world datasets.

Our approach assumes the robot has already created and saved a map as a
RatSLAM structure. This structure includes the Local View Cells (LVC), Pose Cells
Network (PCN), and Experience Map (EM). This saved map is the loaded map of the
environment. When the new session begins, the agent loads this map into its memory but
assumes no prior knowledge about its possible location on this map.

During the current session, the agent starts building a new map, also known as the
partial map of the environment. Our method involves merging partial and loaded maps if
the robot crosses any location earlier mapped in the loaded maps. Hence, the merging
occurs when the loaded and partial maps intersect at a specific location in the physical
environment. The two RatSLAM structures are combined through the merge mechanism,
resulting in a unified representation that includes a single LVC, PCN, and EM to represent
the environment accurately. However, if the robot begins the session at a known location
within the loaded map, the algorithm activates the corresponding experience within the
loaded map. This process is equivalent to multisession solution type (i). We elaborate on
this merging process in the subsequent sections.

4.1 Methodology

The merging process is triggered when the agent generates a template in the
partial map that matches a previously saved template in the loaded map (Fig. 8), which
means the robot has visited a common location in both mapping sessions. To compare
these templates, we employ the same procedure used in RatSLAM, i.e., where a new
template from the partial map is compared to all the templates in the loaded map.

We formalize that both loaded and the partial maps consist of RatSLAM’s structures
(see Fig. 3), where V , P , E, lm and pm stand for Local View Cell, Pose Cell Network,
Experience Map, loaded map and partial map, respectively. The template of the partial
map matches a template from the loaded map V pm

nvp
= V lm

u (Fig. 8), where nvp is the
number of templates of V pm. Furthermore, the views V pm

nvp
and V lm

u are linked to the center
of the activity packet, displayed as the green cubes, P pm

z and P lm
u , respectively. However,
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even though the templates represent the same place, their activity packets may activate
different coordinates (x′, y′, θ′) in the respective PCN, P pm and P lm. Similarly, for the EM,
the templates and activity packets are associated with experiences epm

z and elm
u (Fig. 8,

green nodes), where these experiences may have different poses coordinates.

Relevant information for merging also depends on the last template activated in
the partial map before meeting the condition for merging, corresponding to the state
k = nvp − 1. Note that the linked centers of the activity packet P pm

z and P pm
k are spatially

separated by a distance d. Likewise, their associated experiences epm
z and epm

k have link
information (Eq. 2.12) that encodes the distance information between their poses.

Figure 8 – Condition for the merging procedure between two RatSLAM structures.
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During the merging process, the partial RatSLAM map structures and their
relationships are inserted in the loaded map in four operations (Fig. 9): (i) the LVC are
merged (Fig. 9a), (ii) the matching template in the partial map V pm

nvp
is linked to a new PCN

activity packet location, which corresponds to a shift (Fig. 9b), (iii) the associations
between all LVC and PCN are shifted by the same amount (Fig. 9c), and (iv) the EMs are
merged (Fig. 9d). The following subsections provide a more detailed explanation of these
operations. Once the merge procedure is complete, a single RatSLAM structure is
obtained (Fig. 9e) and continues the mapping session.

4.1.1 Merging Local View Cells

The purpose of merging LVC is to combine the templates from partial and loaded
maps into a unified LVC structure. All templates from the partial map are concatenated to
the LVC of the loaded map, except for the most recently acquired template already
included in the loaded structure.:

V lm = [V lm,1, ..., V lm,nvl , Vpm,1, ..., Vpm,nvp−1] (4.1)
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Figure 9 – Merging partial and loaded RatSLAM maps.
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where nvl is the number of templates of V lm.

In the last stage of the LVC merge, the template that represents the current robot’s
view scene V lm

u is activated in the V lm (Fig. 9, green sphere).

4.1.2 Pose Cells Network Activation

Once the LVC is merged, the activated template is V lm
u . Thus, to correctly activate

the PCN units associated with this template, an injection of activity should occur at the
coordinates of P lm

u . Before the merge procedure, the last activated packet in the partial
map was P pm

z (Fig.9b, light green cube). Therefore, a change of activity from P pm
z to P lm

u is
necessary and can be observed as a shift of activity in the P lm

u (Fig. 9b, green arrow). The
difference of coordinates between P pm

z and P lm
u is defined as:

∆x′ = x′
p + x′

l;

∆y′ = y′
p + y′

l;

∆θ′ = θ′
p + θ′

l.

(4.2)

where (x′
p, y′

p, θ′
p) and (x′

l, y′
l, θ′

l) are the coordinates of activity packets P pm
z and P lm

u ,
respectively.
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4.1.3 Shifting Association between LVC and PCN

To ensure consistency in the loaded map, all associations between LVC and PCN
in the partial map must be updated to match their new positions in PCN. As an example,
we consider the penultimate view in the partial map. P pm

k must be shifted to keep the
previous distance d to P lm

u (Fig. 9c, red arrow). The transformation function that shifts the
activity packet P pm

k to P lm
k is defined as f():

f(x′
u, y′

u, θ′
u) = (x′

s, y′
s, θ′

s);

x′
s = (x′

u + ∆x′)(mod nx′);

y′
s = (y′

u + ∆y′)(mod ny′);

θ′
s = (θ′

u + ∆θ′)(mod nθ′).

(4.3)

where (x′
u, y′

u, θ′
u) are the coordinates of P pm

k . The (x′
s, y′

s, θ′
s) are the shifted coordinates of

P lm
k in the loaded map.

Once this shifted operation is carried out, the excitatory links β lm are updated as
follows:

β lm
nvl+i,f(x′,y′,θ′) = βpm

i,x′,y′,θ′ , i ∈ {1, ..., nvp − 1}. (4.4)

where (x′, y′, θ′) are the coordinates of the energy packets from P pm.

4.1.4 Merging Experience Maps

Before merging the experiences of Epm into E lm, it is necessary to establish a
consistent transformation between the experiences in the partial map and those in the
loaded map. Before the merge, the experience epm

z represented the actual pose of the
robot and was linked to epm

k in Epm, as shown in Fig. 8. This epm
z is equivalent to elm

u in the
loaded map. The experiences epm

z and epm
k encode the final and penultimate poses of the

robot in the partial map.

The topological-metric relation between epm
k and epm

z must be kept between epm
k and

elm
u after the merge process by applying the same transformation on epm

z and epm
k . epm

k after
the transformation is denoted as elm

nel+k (see notation in Eq. 4.8) and it is shown in the
merged EM E lm in Fig. 9d where the dashed red line indicates the transformation.

This transformation involves a combination of translational and rotational operations
in two dimensions. Let pl = [xl, yl, θl]T and pp = [xp, yp, θp]T be the poses of the equivalent
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experiences elm
u and epm

z , respectively. The function t transforms the pose pp to the pose
pl, i.e. t(xp, yp, θp) = xl, yl, θl, and is defined as follows:

t(xp, yp, θp) = [H(xp, yp), θp + ∆θ]T . (4.5)

where ∆θ = θl − θp and H(xp, yp) is defined by:

H(xp, yp) =
cos(∆θ) − sin(∆θ)

sin(∆θ) cos(∆θ)

 xp −∆x

yp −∆y

 . (4.6)

where ∆x = xl − xp and ∆y = yl − yp. Once function t is defined, it must be applied on
the poses of Epm experiences so they could be inserted on the merged E lm, which is
carried out through operation T , defined below. In addition, operation T also changes the
information of the new experiences in E lm with their correspondent template and energy
packets according to operations (i) and (iii) loaded map’s structures V lm and P lm.

elm
nel+i = T (epm

i ), i = 1, ..., nep − 1;

= {V lm,i+nvl , P lm,i+nvl

f(x′,y′,θ′), t(ppm,i)}.
(4.7)

where epm is an experience from E lm. The nel and nep are the number of experiences in
E lm and Epm maps, respectively. It is important to mention that epm

z is not added in E lm

because it is already equivalent to elm
u . Then, the new experiences are inserted on the

merged E lm.

E lm = [elm
1 , ..., elm

nel
, epm

nel+1, ..., epm
nel+nep−1] (4.8)

The last step iv) is to connect, through links, the added nodes on the E lm as follows:

li+nel,j+nel
= {∆p(i+nel)(j+nel), ∆ti,j} (4.9)

i = 1, ..., nep − 2 and j = 2, ..., nep − 2, which is similar to (2.12). As epm
z is not inserted its

equivalent, elm
u , has to be connected to epm*

k through (4.9) with i + nel being k and j + nel is
u.

4.1.5 Merge Algorithm

The merge algorithm is outlined in the Algorithm 1, highlighting the equations that
make up each step. Complexity analysis can consider the match and the merge routines
separately. The computational complexity of the merge process is determined by the
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matching of a template in the partial map of size nvp with a template of size nvl from
previous sessions stored in κ, the computational complexity can be given by:

• Matching routine: depending on the search implementation, it could be κ×O(1),
κ×O(log(nvl)) or κ×O(nvl);

• MergingLocalViewCells(line 2): O(nvp);

• ComputeDeltasPCN(line 3): O(1);

• P lm updating (line 4): O(1);

• ShifitingAssociationLvcPcn(line 5): O(nvp);

• ComputeTransformation (line 6): O(1);

• MergeExperiencesMaps (line 7): O(nep).

Algorithm 1 Merge of RatSLAM Structures

1: procedure M E R G E(Vlm, Vpm, Plm, Ppm, Elm, Epm)
2: V lm ← MergingLocalViewCells() ▷ Eq. 4.1
3: ∆x′, ∆y′, ∆θ′ ← ComputeDeltasPCN() ▷ Eq. 4.2
4: P lm

current ← P lm
u ▷ PCN activation

5: P lm ← ShifitingAssociationLvcPcn() ▷ Eq. 4.4
6: t()← ComputeTransformation() ▷ Eq. 4.5
7: E lm ← MergeExperiencesMaps() ▷ Eq. 4.7,4.8,4.9

In summary, the merge algorithm’s complexity stays within linear behavior when it
comes to Local View Cells (in partial and loaded maps) and Experience Map sizes.

4.2 Experimental Setup

This study explores four different environments, and for each of them, datasets of
video streams or image frames were collected from tours conducted by real and virtual
robots. The four environment datasets consist of i) videos generated by a virtual robot
during an ellipse-shaped tour, referred to as the Virtual Tour dataset; ii) videos generated
by a real robotic platform touring inside a research lab, known as the Lab Tour dataset; iii)
frames extracted from the “iRat” Australian dataset; and iv) frames extracted from The
New College Vision and Laser dataset. The latter two were employed to validate the
OpenRatSLAM implementation (BALL et al., 2013). Each environment is further detailed in
the subsequent subsections.

To evaluate the proposed multisession approach, the maps from single-session
and multisession are compared using the Iterative Closest Point (ICP) algorithm



Chapter 4. A Multisession Approach for RatSLAM 54

(BESL; MCKAY, 1992). ICP addresses the registration problem by iteratively finding a
transformation matrix that aligns the two maps as closely as possible. To evaluate the
accuracy of the transformation matrix, ICP computes the root mean square errors (RMSE)
between corresponding node distances in both maps. The iterations stop when the
RMSE falls below a defined threshold, or the algorithm reaches the maximum number of
iterations. By providing the RMSE over the distances of corresponding nodes, ICP yields a
single value that evaluates the overall trajectory of the multisession and single-session
maps, with an RMSE of 0 indicating a perfect match. The Libicp algorithm (GEIGER;
LENZ; URTASUN, 2012) is utilized for these purposes in this article.

The RatSLAM algorithm requires a specific set of parameter values for each
environment (BALL et al., 2013; MILFORD; WYETH, 2008). These parameters are
required in all the main structures, i.e. LVC, PCN, and EM. The parameter values for each
environment are displayed in Tab. 2. In both the “iRat” and New College datasets,
odometry information is obtained from the robot’s wheel encoders, so the Visual Odometry
parameters were not used.

The multisession RatSLAM source code was implemented using Python 3.6 and is
available at <https://zenodo.org/badge/latestdoi/568248424>.

4.2.1 Virtual Tour experiment

In the Virtual Tour experiment, the robot takes an ellipse-shaped tour in a virtual
environment (Fig. 10). The environment and the robot were modeled in an earlier version
of CoBeL-RL (DIEKMANN et al., 2023).

This experiment consists of two mapping sessions. In the first session, the robot
completes three-quarters (3/4) lap through the environment (Fig. 10b (blue line)). When
the robot reaches the end of this path (blue diamond), the experience map is saved. In the
second session, the virtual agent loads the previously saved map but starts mapping from
a new location (yellow cross) within the environment, creating the partial map. The robot
performs almost three complete laps (yellow line) and eventually travels on the same path
as in the first session.

The merge between the partial map from the second session and the loaded map
from the first session takes place when the agent encounters a view that is already stored
in the loaded map (Fig. 10b, red circle). Once the merge occurs, the virtual robot continues
mapping using the merged RatSLAM structure until the end of the second session.

It is important to note that the video frames that generated the map in the first
session are included in the video frames used in the second session. Specifically, the
video from the first session is embedded in the video stream used during the second
session. As a result, when the agent reaches the merge point in the second session,

https://zenodo.org/badge/latestdoi/568248424
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Table 2 – Parameter of RatSLAM’s to each tested environment.

name value
Virtual Tour Lab Tour iRat New College

# Visual Odometry
vtrans_image_x_min 0 80 - -
vtrans_image_x_max 256 560 - -
vtrans_image_y_min 0 240 - -
vtrans_image_y_max 64 360 - -
vtrans_scaling 10.0 10 - -
vtrans_max 0.1 0.1 - -
vrot_image_x_min 0 80 - -
vrot_image_x_max 256 560 - -
vrot_image_y_min 0 240 - -
vrot_image_y_max 64 360 - -
camera_fov_deg 360 50 - -
camera_hz 1 1 - -
# Local View module
vt_panoramic 0 0 0 1
vt_match_threshold 0.05 0.04 0.035 0.059
vt_shift_match 5 4 4 4
vt_step_match 2 1 1 10
vt_normalisation 0.5 0.5 0.5 0.5
vt_active_decay 1.5 1.0 1.0 1.5
template_x_size 128 80 50 60
template_y_size 32 60 30 10
# Pose Cell module
pc_vt_restore 0.05 0.05 0.05 0.05
pc_dim_xy 80 80 11 80
pc_vt_inject_energy, δ 0.06 0.5 0.6 0.06
pc_dim_th 35 36 36 35
exp_delta_pc_threshold 4.0 1 2.0 4.0
pc_cell_x_size 1 1 0.015 1.0
# Experience Map module
exp_loops 250 250 20 20
exp_initial_em_deg 140 90 140 140

the subsequent frames are the same frames collected in the first session. Therefore,
RatSLAM should not create new experiences as the agent traverses the path covered in
the first session (blue path).

Furthermore, after the merge, a section of the path between the end of the first
session and the beginning of the second session (the dashed yellow line between the blue
diamond and yellow cross) has not been mapped. The agent in the second session should
map this section to close the loop of the ellipse path fully.

4.2.2 Lab Tour experiment

The Lab Tour experiment involves mapping a research laboratory (Fig. 11a) using
a robot platform called RoboDeck1 (Fig. 11b). The RoboDeck platform has a monocular
camera with a resolution of 640×480. In this experiment, only the robot’s camera was
1 http://www.xbot.com.br/
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Figure 10 – Virtual Tour environment setup.
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used to capture the video streams, and the odometry information was extracted using
visual odometry. The video streams for this experiment were obtained by manually driving
the RoboDeck robot platform on a room tour. The robot follows a rectangular trajectory
resembling an eight shape (Fig. 11c).

In the first session, the robot completes two counterclockwise laps around the
small rectangle, starting at the location marked by the blue cross and ending at the blue
diamond (Fig. 11c, blue line). In the second session, the robot completes nearly two
counterclockwise laps around the large rectangle, starting at the location marked by the
yellow cross and ending at the yellow diamond (Fig. 11c, yellow line).

The merge between the maps is expected to occur at the point where the two
paths first meet (Fig. 11c, red circle). After the merge, a final loop closure is expected
when the robot returns to the start point of the second session (yellow cross).

4.2.3 iRat experiment

The multisession approach used the iRat 2011 Australia dataset to validate the
method with more than two mapping sessions, focusing on consistency in more than two
sessions. The dataset was collected while exploring an outdoor road tour by a small
mobile robot named iRat, which resembled a large rodent in size and shape (BALL et al.,
2013). The robot was equipped with an overhead camera and dead reckoning sensors to
capture images and odometry data.
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Figure 11 – Lab Tour experiment setup.
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The complete dataset consists of a video approximately 16 minutes long (BALL et
al., 2013), during which the robot explores the environment by moving without any specific
pattern along the roads. However, only a portion of the dataset frames corresponding to
five mapping sessions was used for the experiment. The first four sessions involve internal
laps within the environment. The last session corresponds to the external lap (Fig. 12b)
and therefore merges the four internal maps into a single one when it travels through their
common areas.

The map from one mapping session is transferred and used as the loaded map in
the next session. The two maps can be merged once the partial map session overlaps
with the loaded map. This merging process is then repeated in subsequent mapping
sessions. Figure 12c illustrates the merge points between the fifth and first sessions (red
circles) and the fifth and second sessions, respectively.

4.2.4 New College experiment

The New College Vision and Laser dataset is a comprehensive dataset collected
from a robot that completed multiple outdoor loops around the New College campus in
Oxford (SMITH et al., 2009). The dataset includes 360◦ images (Fig. 13a), odometry, and
laser scan data. Similar to the iRat dataset, the New College dataset has been used to
validate the openRatSLAM implementation (BALL et al., 2013). Given its complexity, this
experiment aims to validate the multisession approach using full-scale long-term data.

The experiment consists of three mapping sessions. The first two sessions cover
different areas of the environment (Fig. 13b, blue and green paths). The goal of the third
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Figure 12 – The iRat experiment setup.
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session is to merge the two loaded maps into a single map (yellow path). Additionally, this
session introduces a significant amount of new visual information to the mapping. This
additional input will test the approach’s ability to maintain consistent mapping after the
merge operations.

In the first session, the robot completes three clockwise laps inside the ellipse-
shaped area (upper blue arrow). Subsequently, the robot moves towards the intermediate
area between the first and second sessions and returns to the ellipse area to complete its
fourth lap, this time in a counterclockwise direction (bottom blue arrow). In the second
session, the robot explores different regions of the environment, completing a total of two
clockwise turns.

The third mapping session begins at a position within the map from the first session
(Fig. 13, yellow cross). The robot traverses the entire environment in counterclockwise
laps. In particular, the robot’s last counterclockwise lap within the area corresponding to
the second session adds novel information for the mapping.
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Figure 13 – The New College Oxford Experiment Setup.
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4.2.5 RatSLAM’s parameter regularization

The RatSLAM’s parameter tuning can become challenging, time-consuming, and
resource-consuming for new environments, especially those vastly different from the
datasets experienced in validating RatSLAM (BALL et al., 2013). The Lab tour dataset fits
this problem. In this section, a new RatSLAM parameter tuning method is presented.

In the manual tuning algorithm proposed by Ball et al. (2013), only the vt_match_threshold
and pc_vt_inject_energy parameter should be adjusted. The remaining parameters should
be set similarly to one example in their work. These examples support parameters for
large real-world, 360 degrees, and controlled small environments. However, for a different
environment, e.g., a virtual environment, the default values for the remaining parameters
are not guaranteed to work appropriately.

In addition, the manual tuning algorithm assumes that the velocities parameters are
correctly adjusted before the tuning of the vt_match_threshold and pc_vt_inject_energy.
To check the correct values for the Visual Odometry parameters, the rate R = Ṫ /Ė should
be closer to 0.5 or 1.0, where Ṫ is the number of visual templates and Ė is the number of
experiences. After tuning the Visual Odometry parameters, the vt_match_threshold
is tuned inside a loop function to keep the R rate between 0.5 and 1.0. Finally, the
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pc_vt_inject_energy is tuned inside another loop to make RatSLAM closes a loop correctly
in the environment.

The tuning process of RatSLAM by (MENEZES et al., 2020) is formulated as an
optimization problem that considers the values of the parameters, the generated, and the
ground-truth map. First, the Irace package automatically generates a candidate parameter
set for the RatSLAM according to pre-defined ranges of values for each parameter. For
each parameter set file, RatSLAM builds an EM, named generated map. Then, the
deviations between the generated map and the ground truth map (obtained from the
robot’s odometry) are evaluated with the ICP algorithm, resulting in a residual error value.
Finally, Irace considers these errors to select candidates for the next iteration and generate
new combinations of parameters until the error reaches a stopping criterion. The objective
function is described as follows (MENEZES et al., 2020):

p∗ = argminp∈P

NV∑
k=1

er(p,vk) (4.10)

that minimizes the residual error, er(p,vk), between the generated map and the ground truth,
computed by ICP over the 2D coordinates points. Each mapping is generated by the
RatSLAM using a parameter set, p, and the input video stream vk taken from NV input
files.

Since the ICP computes the mean squared error of the distances between the
ground truth and generated map, the closest match between them leads to an error closer
to 0, and the higher error variation will depend on the maximum distortion of the generated
map. Therefore, the ICP can fairly represent the perfect match of the maps when the error
between them is 0, but it cannot precisely inform their similarities if the error is higher than
0.

The tuning method in (MENEZES et al., 2020) is assumed to correct the
pc_vt_inject_energy parameter if the ground truth map has a loop closure. This is because
the Irace will positively consider parameters that generate maps similar to the ground truth.
However, as the Irace only considers the similarity between the two maps, it does not
take into account the R rate as proposed in (BALL et al., 2013), which recommends a
generated EM with a R rate ∈ [α, β]: commonly α = 0.5 and β = 0.9. To overcome these
issues, the new proposed objection function is given as follows (GOMES et al., 2022):

p∗ =p∈P

NV∑
k=1

er(p,vk) × (1 + max (R(p,vk) − α, β −R(p,vk), 0))×

log10(Nx + 10)
(4.11)
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where (1 + max (R(p,vk) − α, β −R(p,vk), 0)) increases the error only if R rate is out of
the recommended interval [α, β]. The log10(Nx + 10) penalizes generated maps with
the higher number of nodes Nx. Hence it is assumed that the Irace prioritizes those
parameters that maintain the R rate in the desired value, leading to configurations that
generate maps with a minor number of points but are better distributed over the map.

An experiment is proposed to evaluate the robustness of the RatSLAM tuning
method, focusing on the generalization capacity for different laps performed by a robot
within a virtual environment that resembles the Lab Tour, i.e., an “eight”-shape environment.
The experiment consists of tuning RatSLAM for specific laps (training stage) and assessing
the mapping quality in the different laps as well as the entire environment (testing
stage). This type of experiment is also justified because tuning time over smaller laps,
describing simpler geometric figures, is considerably shorter than over more extensive
laps, describing complex figures.

In the training stage, the Regularized Tuning Method finds a suitable parameter set
in one of the small laps (clockwise and counterclockwise). The found parameters are
tested in the more complex video streams, the eight lap, proving to be suitable to the
unseen data input (generalization).

The results displayed in Figs. 15, 14, and 16 demonstrate the effectiveness of the
tuning method. It shows that the parameter trained on the counterclockwise lap is
well-suited for all areas of the environment, including those that were not utilized in the
training phase. The “eight” lap is particularly significant because it entails changing
directions and covering the environment completely, indicating a notable generalization
capability for the method.

Finally, we used the proposed parameter tuning approach to enhance the
parameters for Lab Tour environment (displayed in Tab. 2) using a C++ implementation of
RatSLAM (MUñOZ et al., 2022). These parameters were then minimally adjusted to fit the
version of RatSLAM used in this work.
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Figure 14 – EM of the counterclockwise lap.

Source: Designed by the author and adapted from (GOMES et al., 2022)

Figure 15 – EM of the clockwise lap with counterclockwise parameters.

Source: Designed by the author and adapted from (GOMES et al., 2022)

Figure 16 – EM of the eight lap with counterclockwise parameters.

Source: Designed by the author and adapted from (GOMES et al., 2022)
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4.3 Results

This section presents the results of the Virtual Tour, Lab Tour, iRat, and New
College experiments. To compare the multisession solution with the standard RatSLAM
process, the EMs for both multiple mapping and single mapping sessions are displayed.

4.3.1 Virtual Tour Results

For comparison, the EM for the single RatSLAM mapping is displayed in Fig. 17a.
The link between the start and endpoint of the EM shows that the loop is closed in the
map. The result of the multisession mapping is presented in different stages to show the
evolution of the EM, starting at the end of the first session (Fig. 17b). Figure 17c depicts
the second session with the partial map (yellow), alongside the loaded map (blue), at the
moment when the agent found an experience on its EM that matched with an experience
in the loaded map, thus triggering the merge process. After the merge procedure, the
experiences of the partial map were transformed (translation and rotation) and joined into
the loaded map (Fig 17d). Once the agent completed a full lap in the second session, the
EMs of the first and second sessions formed a closed loop (Fig. 17e). As expected, the
number of EM nodes in the single and multiple sessions is the same, meaning no new
experiences were created after merging the maps. Therefore, the merge operations made
the creation of new experiences unnecessary. Neither new templates nor new activity
packets on PCN were added to the EM.

Figure 17f displays the final merged EM of both the first and second mapping
sessions. As displayed, a path correction is performed by RatSLAM over the EM. This
correction on the merged EM shows that after operation iv), the nodes are linked in such a
manner that they influence each other when the relaxation algorithm distributes the
odometry error throughout the graph. Therefore, this path correction demonstrates that the
RatSLAM works as expected after the merge procedure.

Finally, the ICP comparison of both single and multisession maps shows strong
similarities between the paths after the transformation of the merged map to fit into the
single-session map (Fig. 18). RMSE = 0.00773327.

The behavior of the PCN is analyzed during the merge process. The Virtual Tour
PCN was chosen because it has a simplified behavior due to the path mapped by the
agent, i.e., the PCN is fully activated in the Θ axis (robot orientation) because of the
ellipse-shaped laps. This behavior can be seen after the end of a single mapping session
(Fig. 19a). It is worth mentioning that the second and third laps done by the virtual agent
have the same frames and speed information as the first one. Hence, the PCN units from
the first lap are reactivated in these next ones. Therefore, we define start and end for the
first and last energy packets created in the single mapping session.
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Figure 17 – Experience Maps (EM) of the Virtual Tour experiment.
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Figure 18 – ICP comparison for Virtual Tour experiment.
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The PCN for the multisession is partially stored in the loaded and partial map
structures. As the loaded map has not completed a full lap, its PCN is partially filled on the
Θ axis (Fig. 19b). Likewise, the partial map also has only part of its PCN activated.
Nevertheless, its last activation (blue) corresponds to the start LM activation of the loaded
map (Fig. 19c). Through operation (iii) in the merge, the activities of the partial map are
shifted to match the blue activity packet with the start LM in the loaded map. Note that part
of the partial map PCN activity packets is shifted to the network’s top face after reaching
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the bottom face’s boundary.

Similar to the single SLAM session, the final merged map of the Virtual Tour is a
closed-loop ellipse. Consistently, the final PCN is activated through the complete Θ axis
after the merge (Fig. 19c). These results show that our method changes both EM and the
PCN coherently, and their final results resemble the ones from a single mapping session.

Figure 19 – Pose Cells Network (PCN) activation in the Virtual Tour experiment.
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Finally, to demonstrate the influence and impact of the PCN operation on the merge
process, multisession mapping was carried out without shifting the PCN activities of the
partial map (operation iii). As expected, new experiences were created due to the incorrect
association between templates and PCN activity (Fig. 20). Therefore, as demonstrated,
the merge operations on the PCN are necessary for RatSLAM to perform correctly.

4.3.2 Lab Tour Results

Compared to the Virtual Tour, the Lab Tour experiment is more complex in two
regards. It was performed in a physical environment using a robot in a more complex
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Figure 20 – No shifting association between PCN and LVC.
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environment’s topology. Due to the robustness of RatSLAM, the EM for the single mapping
session nevertheless correctly represents the environment’s topology (Fig. 21a). So, does
the multisession mapping, which we discuss step-by-step? After the first session, the EM
only reflects one of the loops in the environment (Fig. 21b) since the agent only had
experiences in the smaller loop. Up until the merge, conditions are met (Fig. 21c), the
loaded and partial maps are not aligned, and their relative positions are random. This
changes when the two maps are merged (Fig. 21d). Note that the nodes of the partial map
had been concatenated at the merge point (red circle).

Figure 21e displays a path correction of the start and end nodes (blue cross and
diamond symbols) of the first session map. Path correction over an already mapped place
reinforces the expected execution of RatSLAM after the merge procedure since both maps
are linked in one single structure. Thus, all the nodes should be affected if changes are
needed in the EM after the merge. Besides that, this result shows that the merge approach
could improve the mapping in multisession.

The final EM at the end of the second session exhibits the results of the second
loop closure when the robot completes a full lap in the second session path Fig. 21f.
This final map is similar to the EM generated in the single session (Fig. 22). RMSE =
0.00883269.

4.3.3 iRat Results

The iRat experiment is challenging since it requires merging maps in five sessions.
Nevertheless, single-session RatSLAM performs very well, generating an accurate EM
(Fig. 23a). Note that the robot continuously moves through the environment in a single
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Figure 21 – Experience maps (EM) of the Lab Tour experiment.
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Figure 22 – ICP comparison for Lab Tour experiment.
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Figure 23 – Experience maps (EM) of the iRat experiment.
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mapping session. This continuous movement influences the behavior of RatSLAM’s
relaxation algorithm (2.13) since the path correction depends on the connection among
the nodes.

The results of the multisession mapping show that the fifth session seamlessly
connected the loaded EMs of the previous sessions. (Fig. 23b-f). Unlike single-session
mapping, multisession maps are not generated through continuous robot movements, that
is, each session generates its map independently. In addition, the mapping of the fifth
session covers only the external area of the environment. Therefore, the existing links
between the loaded and partial maps are their regions corresponding to this external path.
Without linking the internal nodes with the external ones, no path corrections can be made
on the final map. This may have influenced the high distances shown in the internal maps
compared to single-session EM (Fig. 24). Nevertheless, the ICP comparison between the
final multisession EM with the single-session EM shows clear visual similarities between
the internal paths and the overall map. (Fig. 24). RMSE = 0.0126932.

4.3.4 New College Results

The New College experiment is the biggest challenge since it involves mapping an
even more complex environment, and the multisession version requires the merging
of large maps. The single-session EM closely matches the physical structure of the
environment (Fig. 25a). Similarly, the first and second sessions show similar maps for the
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Figure 24 – ICP comparison of EM for iRat experiment.

12.0 12.5 13.0 13.5 14.0
0.00

0.50

1.00

1.50

2.00

y
(m

)

x(m)

Source: Designed by the author and adapted from (MENEZES et al., 2023)

different areas (Fig. 25b-c).

The partial map of the third session is quickly merged since it starts in a known
place inside the first session loaded map (Fig. 25d, red circle). After completing its
trajectory in the first session area, the resulting map is merged into the second session
loaded map at its expected location (Fig. 25e, red circle).

As can be observed, in continuing the mapping, the RatSLAM algorithm applied an
inconsistent path correction at the second merge point, which affected the final map (red
squares, Fig. 25e–f). This inconsistency led to a clear difference between single-session
and multisession maps when compared by ICP (Fig. 26, RMSE = 85.4687). However,
despite this inconsistent correction, the final multisession map presents a sufficient
similarity of structures that compose the environment path (see Fig. 13). Notably, the
multisession map correctly closed loops where the single-session mapping failed to
perform it. (green circles, Fig. 25a,f).

4.4 Summary

This chapter introduced a new approach to the multisession SLAM problem for the
RatSLAM algorithm. Our solution addresses the mapping scenario where the robot is not
located in the previously generated map, and newly mapped areas have to be merged with
previously mapped ones into a single coherent map of the environment.

To merge RatSLAM maps, we employ a merge operation in its structures (LVC,
PCN, and EM) acquired and stored during previous mapping sessions. Our approach
involves merging the current map with previously stored ones when both maps share a
template, adjusting all structures spatially. Once the merging is complete, the mapping
session can continue, following the standard RatSLAM process and performing new
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Figure 25 – Experience maps (EM) of the Oxford New College experiment.
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Figure 26 – ICP comparison of EM for Oxford New College experiment.
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merging procedures as needed.

In this study, we examined four different environments: the Virtual Tour experiment,
where a virtual robot followed an ellipse path; the Lab Tour experiment, which involved
the mapping of a research laboratory using a robotic platform called RoboDeck; the
iRat dataset, which was used to validate the openRatSLAM implementation; and the
challenging New College dataset. For the Virtual Tour and Lab Tour experiments, two
mapping sessions were conducted, while the New College and iRat experiments were
divided into three and five mapping sessions, respectively

The results of the experiments indicated the following: a) EMs successfully
performed path corrections; b) no new experiences were generated during the Virtual Tour
experiment; c) the PCN activity packages for Virtual Tour in a single mapping session
were similar to those of the multisession; d) EM matching was effective in both the
real-world Lab Tour and the realistic iRat experiments; e) loop closure was accurately
performed compared to single-session mapping in the New College dataset. Overall,
this study demonstrates that the proposed merge mechanism effectively addresses
multisession solutions (i) and (ii) and can serve as a solution for the RatSLAM algorithm.
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5 Spatial Learning Based on Cognitive
Maps

This chapter presents our study of two important processes in spatial navigation,
mapping and learning. For this, we modify CoBeL-RL, adding RatSLAM to its learning
process as a State Representation Learning (SRL). Therefore, RatSLAM dynamically
acquires and updates 2D spatial states from unknown environments to CoBeL-RL.

Initially, we present how the RatSLAM was integrated into the CoBeL-RL process,
along with simulations demonstrating the framework’s usage in rewarded spatial tasks. By
adding RatSLAM, we introduced new variables that directly impact the physical exploration
of the environment and the process of learning rewards.

Subsequently, we employ this framework with the Dyna-DSR agent already
implemented in CoBeL-RL to investigate latent learning computationally. We use this
computational approach to comprehend experimental results on learning performance
observed in animals during latent learning over various experimental designs and
exploration strategies.

Specifically, we examine the contrasting effects of the type-one and type-two
experiment designs (KARN; JR., 1946) and delve into the exploration strategies involved in
learning cognitive maps, including changing the RL agent policy and implementing maze
structures with ports (DAUB, 1933).

5.1 CoBeL-RL and RatSLAM Integration

The neural-inspired approach for mapping and learning in unfamiliar environments
builds upon the existing functionalities of CoBeL-RL (Fig. 27). The primary function of
RatSLAM is to construct the Experience Map (EM), which serves as the fundamental
component for the Topology Graph used by CoBeL-RL. Whenever the CoBeL-RL agent
acts in the environment, RatSLAM updates the Experience Map based on changes
in the environment’s observations. Interface modules are implemented to facilitate
communication between RatSLAM and other CoBeL-RL modules.

Our approach also processes information from the virtual robot’s distance sensors
in the 3D environment modeled in Blender Game Engine (BGE) to enable autonomous
navigation. We built a set of proper actions from these data to avoid collisions with
environmental obstacles. While this additional information is optional for the functioning of
CoBeL-RL, it plays a vital role in decision-making when mapping unknown environments.
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The following paragraphs describe the framework’s functioning process.

Figure 27 – Integration of RatSLAM in CoBeL-RL framework.
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The World Module connects with the BGE through web sockets (dashed lines)
(DIEKMANN et al., 2023). This module supplies raw images, distance sensors, and
odometry data from the virtual agent to the CoBeL-RL. The distance sensors return
measurements from four directions, enabling the framework to gather insights about the
robot’s surroundings. Odometry informs about the linear and angular velocities of the
virtual robot. Raw images from the robot’s four cameras are processed in the Image
Observation step to create a panoramic view of the surroundings. These panoramic
frames serve as Oservations for CoBeL-RL, with dimensions set at 256x64 pixels. For
RatSLAM, we use grayscale when working with these observations.

The RatSLAM-World interface module interfaces RatSLAM with CoBeL-RL. From
this module, a RatSLAM interaction can be called, receiving observation and odometry as
inputs, resulting in an internal change in RatSLAM’s structures. For example, Local View
Cells (LVC) templates and Pose Cells Network (PCN) activity may be updated. Ultimately,
the EM is updated based on the PCN and LVC changes. We rely on EM updates to
maintain a mutable Topological Graph within CoBeL-RL.

The RatSLAM-Topology Graph interface employs processes that convert the EM
information into a CoBeL-RL Topology Graph structure. Since the Topology Graph is a
standard component in CoBeL-RL’s spatial representation class (DIEKMANN et al., 2023),
the proposed interface integrates the EM data without making critical modifications to the
CoBeL-RL structure. The conversion from EM to the topological graph can be performed
at various levels. The most straightforward approach involves directly mapping the
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information from EM experiences onto the graph. Alternatively, for example, one can filter
out specific experiences to build a simpler map. In this work, we directly mapped the
Topology Graph from the EM, with each experience in the EM corresponding to a node in
the Topology Graph.

The Topology Graph incorporates structured information about neighboring
nodes based on the actions required to reach them. In our setup, four actions can be
performed by the agent: right, up, left, and down. Figure 28 provides an example of state
s1 neighbors, represented by the array s1_neighbors. The actions that are known or have
been performed from s1 are depicted in naction, which shows the action “down” and refers
to reaching the node s0 (solid line).

Additionally, the structure of the Topology Graph has been modified to include what
we term “non-engaged actions” or “possible actions”. These actions represent areas within
the environment where the robot can physically explore but has not yet engaged. To
automatically determine these possible actions, we leverage information from distance
sensors. Figure 28 depicts pactions, which represents the possible actions of state s1,
determined by the sensor reading d that exceeds the threshold mind. Engaging in one of
these possible actions may create a new experience in the EM and generate a new node
on the map.

Figure 28 – Possible actions.
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By differentiating between known and potential neighbors, our framework can
dynamically choose between continuing to learn within the known states or acquiring new
information by exploring new parts of the environment induced by curiosity (PATHAK et al.,
2017). This flexibility allows for studies on the trade-off and how it may influence the rate at
which the spatial task is learned.

OpenAI Gym Interface calls a “step” within an action from the agent policy decision.
Engaging in this step means the agent will act in the environment. For our model, this
accounts for the action being sent through the aforementioned modules until the virtual
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robot actuates over the environment. This irradiates changes in the robot’s observation,
odometry, and distance readings, ultimately changing the current state of the environment
in the Topology graph. This change is so defined as the next state for the RL agent.
Additionally, the OpenAI Gym module defines the reward for each state.

Together with the next state, the experience tuple (st, at, rt, st+1) is sent to the
Dyna-DSR agent. The Dyna-DSR (see Chapter 2) agent keeps the information of the
current state. The agent implements a small DNN to approximate the SR for each action,
which we refer to as deep SR. The input for the DNN is an Observation, which consists
of a one-hot encoding vector for each state based on the node index of the spatial
representation. Besides that, the agent uses a tabular n× 4× n memory to store the
experiences and perform replay, where n is the number of states.

The final component of the RL agent module involves action selection, where
actions are determined based on the RL agent’s policy or a mechanism for physically
mapping the environment. This denotes the agent can select from actions that lead to
known states or engage in a possible action and learn a new state. We model this dynamic
action selection process by a random variable pτ under a constant value τ . If pτ < τ , an
action is selected from paction; otherwise, it is chosen from naction. In cases where multiple
possible actions exist, the selection of paction is randomized.

Furthermore, we monitor the agent’s performance and ability to obtain rewards
through the CoBeL-RL utility module monitors. These monitors include escape latency,
reward monitoring, and more, allowing us to assess the agent’s behavior.

5.2 CoBeL-RL and RatSLAM in Rewarding Spatial Task

In this first experiment, we evaluated the framework’s performance in learning to
locate a reward within unknown environments operating in either Blodgett or Tolman’s
setup.

Experimental Setup

To simulate the task, we constructed a 14-T virtual maze using Blender (Fig. 29a).
The goal location for our experiments was set to either the yellow or green squares. The
yellow square corresponds to a maze configuration resembling the 6-arm Blodgett T-maze,
while the green square represents the 14-arm Tolman T-maze (TOLMAN, 1948). Physical
walls, i.e., solid blocks, were incorporated to maintain the integrity of the maze, preventing
the agent from executing infeasible actions such as those traversing through the walls.
Additionally, we incorporate invisible virtual doors (dashed green lines) that can be used if
enabled. We use these doors in future simulations.

We conducted simulations with agents using different true-exploration parameters
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Figure 29 – Virtual Environment.
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for each maze configuration. Specifically, we used τ = [0.1, 0.5, 1.0], totaling 3 different
agents, for the Blodgett maze and τ = [0.1, 0.5, 0.8, 1.0] for the Tolman maze (4 different
agents). During each step, the agent receives a minor punishment of (−0.05) as part of the
exploration strategy. This penalty incentivizes the agent to further explore the environment
under the RL paradigm (different from the true-exploration strategy), as the policy aims to
maximize the long-term reward. In our setup, depending on the experiment, when the
agent successfully reaches one of the goals in either the Blodgett or Tolman locations, it
receives a reward of +5.0. We monitor the agent’s Escape Latency to reach the goal
states as a behavioral variable for each experimental setup, with 30 simulations per
agent. The agents learned an ε-greedy policy with ε = 0.3 and a replay batch size of 32
randomly recovered experiences. In addition to the Escape Latency monitoring for
performance analysis, we captured the trial in which the agent learned all states for the
environment. This additional information allows us to discuss the relationship between the
true-exploration performance and pτ value.

Moreover, we also captured in which trial the agent learned the total number of
states in the environment.

Results

Blodgett’s maze experiment results show that the value of τ affects the performance
at which the agent learns the rewarding task. Agents with τ = 0.1 exhibited slower learning
performance (Fig. 30a), as indicated by the higher standard deviation observed in each
trial. Conversely, agents with τ = 0.5 and 1.0 displayed similar learning performance. The
variation in τ also impacts the speed at which the agent captured (learned) the complete
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environment states. The average trial at which the agents acquired full knowledge of the
environment state revealed that lower τ values resulted in slower learning (Fig. 30b).

Figure 30 – Reward learning in Blodgett’s maze.
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Source: Designed by the author

In the Tolman setup experiment, which is more complex regarding the number of
states and path length to reach the rewarded state, the τ value differences significantly
impact the agent performance. For τ = 1.0, agents learn optimally the task around the 15th
trial (Fig. 31b). However, escape latency became stable but did not present an optimal
number of steps to reach the goal, for agents with τ = 0.8, τ = 0.5, and 0.1. Therefore, the
decrease of τ values follows the increase of steps (on average) to complete the task.

Similar to the findings in the Blodgett experiment, varying τ in the Tolman setup
also influences the speed at which the agent learns the complete environment states. The
average trial at which the agents learned all the environment states revealed that lower τ

values resulted in slower learning (Fig. 31b). Outliers show that agents operating at
τ = 0.5 and τ = 0.1 failed to acquire the entire set of states.

5.3 Latent Learning During Spatial Exploration

In our next investigation, we employ our proposed framework in learning reward
tasks through latent learning. We train two types of agents, direct learning and latent
learning, using Blodgett and Tolman’s maze setups.

Experimental Setup

The experiment setup for latent learning follows procedures similar to those
adopted by Tolman and Blodgett (TOLMAN, 1948). Like the rewarded control group in
Tolman’s experiment, direct learning agents receive rewards as they reach the goal
location from the first trial. On the other hand, latent learning agents receive the reward
only after a specific number of trials, which consists of 50 trials of pre-exposure in the
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Figure 31 – Reward learning in Tolman’s maze.
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empty and 50 learning trials with a reward. Both types of agents follow an ε-greedy policy
with ε = 0.3. For the Blodgett maze, agents have a maximum of 500 steps, while the
Tolman maze allows a maximum of 1000. The latent learning is single-trial (ST) agents,
meaning the simulation stops when they reach the goal location or have performed the
maximum number of steps. During each trial, we capture the agents’ Escape Latency and
monitor if they reach the goal location in each trial. For each agent, 30 simulations were
performed.

We modify the way we acquire the environment states in comparison to the
previous experiment, aiming to standardize the analysis of the agents’ successor
representation (SR) and Q-values. Instead of mapping states based on the value of τ ,
we map the states in the same predefined order sequence before the agents start to
learn. Nevertheless, we still utilize RatSLAM to acquire and inform CoBeL-RL about the
agent’s current state. This approach ensures that the representation of states in the
topology graph is standardized and consistent. The mapping approach resembles τ = 1.0,
which prioritizes unexplored locations in the same order of mapping. Moreover, the
reward associated with each state is not computed during the acquisition of states in the
predefined mapping.

Results

Latent learning agents learn the rewarding task faster than direct learning agents
after the pre-exposure phase in both environments (Fig. 32). This latent learning behavior
is observed as a significant drop in Escape Latency curves as they experience reward in
the environment. Escape Latency curves were shifted to simplify behavior analysis during
unrewarded and rewarded trials. Thus, for both agents, the rewarded trials start at 0.

Furthermore, during the unrewarded phase of the experiments, the Escape
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Latency of latent learning agents indicates no apparent learning toward the goal location in
both mazes (trials −50 to −1). Nevertheless, in the rewarded phase, these agents stabilize
their learning curves near trial 10, showing consistent performance in the Blodgett maze.
In contrast, direct agents reach a similar stabilization point around trial 20. Notably, both
agents present a more pronounced disparity in the Tolman maze. The latent agents were
able to stabilize their escape time to reach the goal by trial 15, whereas the direct agents
took around 40 trials to do the same. The results align with the behavioral findings in
Tolman’s and Blodgett’s latent animal learning experiments (TOLMAN, 1948).

Latent learning agents’ success rate of reaching the goal location (Fig. 32a,b, right
panels) does not exhibit significant improvement as during the pre-exposure period.
This absence of improvement suggests that no apparent learning occurs during the
unrewarded learning phase.

Figure 32 – Agent’s escape latency in Latent Learning.
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Source: Designed by the author

The agents have learned a deep SR structure corresponding to the optimal path
leading to the goal location in both environments (Fig.33). Each row of the deep SR matrix
represents the expected future visits to other states starting from the state with the same
index. For instance, the deep SR row 0 (first row) shows the SR of state = 0. Moreover, as
the Dyna-DSR learns a deep SR matrix for each action, we extracted each row from the
optimal action for that state to build a single deep SR matrix. For example, the first row of
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the deep SR representing state = 0 is from the deep SR with action “up”, while the SR of
state = 1 was extracted from the deep SR with action “right”.

The lighter states in Fig.33a illustrate the optimal sequence of states followed in
Blodgett and Tolman’s mazes, in which states 19 and 42 correspond to the goal states in
each respective maze. After completing the rewarded task, a comparison of the deep SR
matrices of the direct and latent learning agents (Fig. 33b,c, comparison between trials
49, right panels) demonstrates their similarity. Trials exhibited in deep SR results are
equivalent to those shown in the Escape Latency in Fig. 32. Thus, trial 0 means the
beginning of the rewarded phase, while trial −50 refers to the init of the pre-exposure
period. It is worth noting that as the state approximates to goal one, their SR values tend
to increase to forward states, showing that backward states are not expected to be visited
in the future. A noteworthy observation is that as the state approaches the goal, the SR
values have an increasing tendency towards the states ahead. This indicates that past
visited states are not anticipated to be visited.

Direct learning agents deep SR shows progressive learning towards the optimal
path representation over trials in both the Blodgett maze (Fig.33b, top row) and the Tolman
maze (Fig.33c, top row). The deep SR values from trials 0 result from the agent’s deep SR
network layers initialization, which follows the Glorot uniform algorithm (GLOROT;
BENGIO, 2010). As the learning process continues, the deep SR matrix shows that each
state is anticipated to visit the states that lead to the goal. This indicates that the direct
learning agents successfully acquire a representation of the optimal path in both maze
environments.

After the pre-exposure period, latent learning agents demonstrate evidence of
having acquired a deep SR that differs from the network initialization (Fig. 33b-c, trial 0,
bottom row). This learned structure indicates that each state has developed an expectation
of visiting its neighboring states. Moreover, a direct comparison between the deep SR
matrices in Tolman’s maze on trial 24 reveals a noticeable difference, with the latent
learning structure being more similar to that observed at the end of the task (trials 49). This
can be explained by the fact that by trial 24, latent learning agents had achieved stable
performance in the tasks.

Individual analysis of deep SR states in latent learning agents provides evidence
that the representation acquired by these agents at the end of pre-exposure is characterized
by a high frequency of expected visits to their neighboring states (Fig. 34). In trial −50,
deep SR values from states 0 and 10 in the Blodgett maze and states 0 and 19 in the
Tolman maze are randomly distributed to the other states according to the initialization of
the network (Fig. 34a-b, left column). The states’ positions in the mazes are marked with
yellow crosses, and the dashed line represents the optimal trajectory from that state to the
goal. The initial and goal locations are identified with red and blue borders. At trial 0, deep
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SR values are higher for closer states and lower for more distant ones. At finishing
simulations with a reward in trial 49 (right column), the deep SR values indicate discounted
visits to states along the optimal trajectory.

Analysis of the Q-values reveals that a learned policy emerges only during the
reward phase (Fig 35). The intensity of the graph’s color symbolizes the values associated
with each state-action pair, normalized between [0, 1]. In the 0 test, the Q-values of both
agents in the mazes show no observable structure toward reward, which indicates that
there is no significant policy learning during the pre-exposure phase for latent learning
agents. On the other hand, the Q-values became distinct for the optimal action during and
after the reward learning phase. Exceptions are seen in Tolman’s maze, where latent
learning agents show equally high Q-values for all actions in states near the end of the
maze. We discuss the impact of these relative values in later sections.

5.4 Impact of Subtle Differences in Task Design on Latent

Learning

The previous simulations have shown the efficacy of our computational approach in
learning within an unknown environment. Using the Dyna-DSR agent, our approach
also presented the ability to perform latent learning over the pre-exposure phase in a
reward-devoid environment.

In this next section, we employ this proposed approach to investigate the impact of
subtle different task designs on the acceleration of the learning process in latent learning.
Specifically, we build upon the experimental findings of Karn e Jr. (1946), in which was
observed different learning performances in two different experiment designs, namely type
one and type two (THISTLETHWAITE, 1951).

Experimental setup

Type one experiment involves a single run in which the animal explores the
environment. Once the animal reaches the desired location, it is removed from the maze.
This type of experiment design corresponds to the Single-Trial (ST) utilized in previous
simulations in this study.

In type two experiments, animals can live or explore the maze for a specific time.
Our simulations refer to this as Time-Fixed (TF) exploration. Unlike ST experiments,
animals are not removed upon reaching the goal location. Therefore, the goal location is
not a terminal state for the agent, and a trial only ends upon reaching the maximum
number of steps. While ST experiments always start at a specific state, state 0, TF
simulations initialize the agent from different pre-defined states. In the Blodgett maze,
these states are [0, 8, 14, 19], with the last being the goal state in the reward phase. In the



Chapter 5. Spatial Learning Based on Cognitive Maps 82

Tolman maze, the pre-defined starting states are [0, 8, 14, 19, 23, 29, 36, 42], with the last
being the goal state. At the reward learning phase, all initiate from state 0, regardless of
the design experiment.

We compare the TF simulation results with the ones presented in the last latent
learning experiment with ST agents. Equivalent to ST agents, the TF agents learn under
the ε-greedy policy with ε = 0.3 and the replay batch size of 32.

Results

Agents under TF exploration demonstrate latent learning compared to direct
learning in the Blodgett and Tolman maze setups (Fig. 36a,b). Regardless, the Escape
Latency reveals a difference in learning performance between ST and TF, with ST
agents showing faster error drops and stabilization in their escape latency. These
results qualitatively reproduce the results from (KARN; JR., 1946). It also aligns with the
simulations from (SCLEIDOROVICH et al., 2020), where similar qualitative results indicate
an advantage for the ST design experiment in terms of learning speed.

We hypothesize that, as the ST exploration is similar to the rewarded task in terms
of how both tasks are conducted – both end when the agent arrives at the destination
location – this causes agents of this design to learn a representation of the environment
during pre-exposure similar to those of the rewarded task. On the other hand, TF
experiments do not associate the goal location with the end of exploration, resulting in a
representation of space less similar to the ones of the rewarded task. We investigated the
underlying mechanism of these velocity differences by looking at the deep SRs of the ST
and TF experiment designs.

To quantify the similarity between the deep SR matrices of the ST and TF designs
and the rewarded task (referred to as the target SR), we employ cosine similarity
(Fig. 37). This involves comparing each row of the ST and TF deep SR matrices with the
corresponding row in the target SR matrix. Blodgett and Tolman’s setup are presented in
Fig. 37a and Fig. 37b, respectively. The cosine similarity scores reveal the level of
similarity between the target SR and the final states of the ST experiments. The TF deep
SR also exhibits some similarity, although it is relatively lower than the ST design. These
results suggest that the final states of the deep SR under the ST design, even without
reward-based learning, resemble the deep SR obtained from direct learning agents trained
with rewards.

In addition, we examine the Q-values that emerged from the agents’ deep SR
learned by the end of the pre-exposure phase. We introduce a reward at the goal location
to compute the Q-values from the agents of ST and TF designs and compute the inner
product with their deep SR (Fig. 38). By analyzing the policy that has been learned, we
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can gain insight into the action-selection decision that expedites learning for ST agents.

Furthermore, from the Q-values, we computed the actions with higher Q-values in
each state (Fig. 39). ST design exploration shows the longest optimal action sequence
associated with the optimal path compared to TF design in both mazes. Circles display the
state where the sequence begins. By starting from this state and following a greedy policy,
ST-based agents would correctly reach the goal state for nine sequences of correct actions
against six for TF in the Blodgett maze. In Tolman’s maze, these sequences are 14 for ST
against 10 for TF.

By comparing the SR and the actions generated by the design tasks, the presented
results show that the ST experiment learns a representation of the environment closely
associated with the rewarded task.

5.5 Impact of Exploration on Latent Learning

In this section, we will examine how exploration affects latent learning. One area of
interest is the operation of doors, which restricts agents from revisiting certain areas.
Additionally, we investigate different policies that the Dyna-DSR agent can adopt as
exploration-exploitation strategies. Investigating latent learning through different policy
analyses is crucial to evaluate performance. Moreover, comparing policies on SR-based
agents can help us comprehend their characteristics on learning performance after
the pre-exposure period. By evaluating policy performance, we can identify areas for
improvement and refine existing policies, leading to enhanced performance and more
effective latent learning.

Experimental setup

In the latent learning experiment with door, direct and latent learning agents adopt
the ST design. Our experiment design differs from the approach taken by (DAUB, 1933) as
the doors remain present during pre-exposure and reward tasks. In contrast, Daub (1933)
only allowed the doors in the environment during rewarded training. We adopted the
ε-greedy policy with ε = 0.3 and a replay batch of size = 32.

Under the ε-greedy policy, presented simulations showed that latent learning
agents find it difficult to locate the goal in the initial attempts (Fig. 32b). This difficulty,
which impacted the delay in learning the task, is attributed to how the agent must explore
the environment. We compare the ε-greedy with softmax policy (SUTTON; BARTO, 2018)
as an alternative to exploration, improving the agents to find the goal location more
frequently in earlier trials.

An advantage of the softmax policy is that it selects the action based on a
probability function based on the Q-values. However, if these values are similar, the
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selected actions can become random (depending on the temperature parameter used
in the function). This problem does not apply to ε-greedy, which selects actions that
maximize the Q-values within a certain probability. Regardless, in its exploration step,
ε-greedy selects random actions that can not be suitable for space exploration. In space
navigation, an exploration strategy to be adopted could be based on exploring states that
were less visited.

In this context, we developed a new policy called “inhibition-greedy” that integrates
the ε-greedy policies with softmax. The inhibition-greedy policy depends on the value of a
random variable value e ∈ [0, 1] and selects a greedy action selection if e < ε. Otherwise, it
engages in an action selection in a softmax function. However, the softmax does not
compute the probabilities over the Q-values. Instead, it computes the probabilities over the
recent state visitation to inhibit the selection of actions that lead to recently visited states.
This is modeled in an inhibition matrix Ins×na , in which ns is the number of states and na is
the actions state space equals to 4. The inhibition-greedy policy selects the action as
follows:

π(s, ε) =



eβ·I(s,a)∑
k

eβ·I(s,ak) if e ≤ ε

argmaxa∈A(s)Q(s, a) otherwise

(5.1)

Each time a state-action pair (s, a) is selected, the inhibition matrix I is updated
with a maximum negative value of −5. Then, I is updated to decrease the inhibition value
by a discount value γ:

I(s, a)← γI(s, a),∀s ∈ S,∀a ∈ A (5.2)

In the experiments that adopt the inhibition-greedy policy, the γ = 0.98 and ε = 0.3
for both inhibition-greedy and ε-greedy policies. The inverse temperature in sotmax policy
is β = 5 in the Blodgett setup and β = 10 in the Tolman maze.

Results

Using doors in our setup shows latent learning (Fig. 40). Latent learning agents
display a decrease in escape latency during both rewards after pre-exposure periods.
Similarly to latent learning experiments without doors, escape latency errors depict no
apparent learning during the pre-exposure phase. Furthermore, the use of doors has been
found to improve the learning process for both direct and latent agents. In comparison with
latent learning without doors (see Fig. 32b), direct learning agents in Tolman’s setup show
a faster error decrease.
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Latent learning is observed in both environments under different policies (Fig. 41a,b).
When considering the escape latency during the non-rewarded phase, the softmax
and inhibition-greedy policies exhibit similar or superior performance compared to the
ε-greedy policy. These policies enable agents to reach their destination with fewer steps,
even without rewards. Additionally, direct learning agents following the softmax and
inhibition-greedy policies outperform the agent using the ε-greedy policy. Nonetheless,
during the rewarded phase, the latent learning agent utilizing the ε-greedy policy
demonstrates a faster reduction in errors and exhibits quicker learning stabilization.

Notably, latent learning agents using the softmax policy in the Tolman setup exhibit
greater instability in errors. While the precise reason for this instability is unclear, one could
attribute to similar Q-values (see Fig. 35,b), which may introduce randomness action
selection for this policy.

5.6 Summary

This chapter proposes a computational approach to mapping and learning in
unfamiliar environments. Our proposed method was founded on combining CoBeL-RL and
RatSLAM as an SRL algorithm. Firstly, we discussed how we integrated these frameworks
and successfully validated this approach in a rewarded learning task. Further, we explored
latent learning using this framework and conducted behavioral and structural analyses to
understand how various exploration strategies and experiment designs can improve
learning.
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Figure 33 – Deep Successor Representation learned during Latent Learning.
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Figure 34 – Successor Representation row mapped to environment topology.
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Figure 35 – Q-values in direct and latent learning agents.
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Figure 36 – Different Designs in Latent Learning.
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Figure 37 – Deep Successor Representation analysis over design experiments.
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Figure 38 – Extracted Q-values from SR and ground-truth reward.
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Figure 39 – Actions of the highest q-values for each state.
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Figure 40 – Effect of doors in Latent Learning.
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Figure 41 – Latent Learning in different RL policies.
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6 Discussion and Conclusion

In this study, we propose a set of computational methods for building maps for
navigation and spatial learning. Our approaches were built on two main frameworks,
RatSLAM and CoBeL-RL. We performed improvements and research on two fronts:
improving mapping capabilities for RatSLAM and combining RatSLAM and CoBeL-RL for
mapping and learning in unfamiliar environments, which we have validated in latent
learning experiments. We discuss the contributions in the following:

6.1 Enhancing Mapping with RatSLAM

Navigating unknown environments is a crucial yet challenging task involving
distinct mechanisms within animals’ brains. These mechanisms integrate external and
internal information to determine the animal’s position and devise navigation strategies.
Furthermore, the spatial structure of the environment can influence how the internal
cognitive map is represented in the brain. These fundamentals have facilitated the
development of computational solutions for real-world problems, such as SLAM. Our
base model for the computational cognitive map is RatSLAM, which shares essential
mechanisms with animals, including visual calibration and path integration, in a simple and
robust structure.

In this study, we extended the RatSLAM capabilities by proposing a method that
enabled it to perform complex mapping tasks, such as multisession SLAM. This approach
employed a merging mechanism that combines the map information from the previous
session with the current one. What sets our method apart from existing ones is that, when
encountering a new location, RatSLAM constructs a partial map and continues mapping
instead of selecting the current map and continuing. If the partial map correlates with past
maps, they are merged instead of discarding the current map and continuing the mapping
process, as done in Tang, Yan e Tan (2018) and Milford e Wyeth (2010).

To allow multisession mapping in RatSLAM, a crucial aspect was the design of the
merge mechanism that considers all RatSLAM frameworks. In particular, the Virtual Tour
results revealed that ignoring the shift operation of LVC and PCN from the partial map after
merging into the loaded map can result in incorrect associations between experiences
during a loop closure. Consequently, this non-association generates an inaccurate
representation of the global map.

Our multisession mapping results exhibited similarity with the maps generated
through single session mapping in several experiments, e.g., Virtual Tour and Lab Tour.
However, as the number of mapping sessions increased, there was a noticeable increase
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in path deviation, particularly in long-term and large-scale mapping scenarios. This
tendency was evidenced by the ICP evaluations in the EMs of the iRat and New College
experiments. The difference between the former may be due to the lack of connection
between the inner and outer loop nodes. In the latter case, the path deviation occurred
after an inconsistent path correction after the merge point.

Despite the presence of path distortions, it is notable that the final maps derived
from both scenarios still maintained a significant resemblance to the single-session map,
showing the potential use of the merge approach in multisession mapping that extends
beyond two sessions and long-term mapping. Finally, our multisession approach corrected
the Lab Tour map by approximating paths representing the same location after merging.
The merge operations over distinct EMs allowed a more accurate global representation of
the environment.

Aligned with multisession with a single agent mapping the environment, multisession
SLAM algorithms can be adapted to operate with multiple agents. This configuration
requires attention to the physical and temporal constraints of the multiple maps being
constructed and merged during mapping. In this work, our multisession algorithm was not
tested on multiple agents. However, additional research can be done on the core structure
of the merge process to extend it for this type of SLAM configuration.

As future work, looking at the results we obtained from the New College dataset
would be valuable. This exploration could help us improve the map merging process,
especially in scenarios involving extensive or long-lasting environments. Another avenue
for improvement could include upgrading the merging process to compare the ongoing
mapping with a selection of previously stored maps in parallel. Such an enhancement
would likely result in an algorithm that can adapt and perform well across various
situations.

6.2 Enhancing Learning with Latent Learning

In addition to achieving complex mapping capabilities, animals can utilize their
maps to improve spatial tasks, such as learning reward locations. Research has shown
that these animals can enhance this learning through latent learning experiments. These
findings are based on the cognitive map theory conceptualized by Tolman (1948) and
supported by subsequent discoveries of brain cells. Leveraging this understanding, the
advantage of first acquiring a map of an environment becomes particularly evident in
applications like search-and-rescue missions. By learning the environment’s layout without
explicit motivation and before engaging in specific tasks, agents or organisms can navigate
more efficiently and effectively, strategically locating targets or objectives without extensive
trial and error. This preliminary map-based navigation minimizes uncertainty and optimizes
decision-making, streamlining the entire process and potentially saving valuable time in
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critical situations.

Recently, a new hypothesis regarding the nature of the cognitive map has emerged,
suggesting its predictive nature. This hypothesis aligns with learning a representation of
the environment. The Successor Representation (SR) algorithm within the Reinforcement
Learning (RL) framework can learn such a predictive model. However, existing frameworks
for latent learning often rely on a pre-existing model of the environment, which fails to
account for a biologically plausible model when the agent needs to learn from an unknown
environment.

As a relevant contribution to this thesis, we propose an alternative approach by
integrating RatSLAM with the CoBeL-RL framework to address the learning of states
(mapping) for RL agents in unknown environments. By adding a mapping mechanism into
the RL framework, researchers might have more flexibility to investigate paradigms such
as exploration-exploitation. They could build realistic-inspired scenarios for learning in
computational setups. Here, the RatSLAM worked as the State Representation Learning
(SRL), which allowed an SR agent to simultaneously build a map of the environment and
learn during this process. Furthermore, the framework’s integration introduced a new
variable for true exploration (τ ). The (τ ) value defines how the agent would explore new
areas of environments, in which agents with τ = 1 prioritize discovering new places and,
therefore, learn a new state for the environment. Adding τ can be associated with how
“curious” (artificial curiosity) the agent might be about the unexplored locations.

During the simulation of a rewarded task, it was observed that agents with
τ = [0.5, 0.1] did not manage to learn the task optimally in the Tolman maze configuration.
Two notable observations were made concerning these results. First, with τ < 1.0, the
stochastic nature of the simulations introduced the possibility that agents might not be able
to find the location of the reward. On the other hand, agents with a higher probability of
finding the target’s location, such as those with τ = 1.0, learn the task more quickly, mainly
in the initial attempts and in an optimized way. In other words, the more curious the agent
was about new areas of the environment, the faster the acquisition of states associated
with the environment, and, as demonstrated by the results of our experiments, these
agents learned the rewarded task optimally.

Moreover, we demonstrated the compatibility of efficient learning with findings
in neuroscience upon different designs and exploration strategies in latent learning
experiments, such as the works of (KARN; JR., 1946) and (DAUB, 1933). In investigating
behavior during latent learning experiments, our findings suggested that the agent’s design
experiments and exploration strategy impact the learning speed among different groups.
For instance, experiment designs in the unrewarded phase that closely resemble the
rewarded tasks yield the most significant improvement in learning when the motivation is
presented in the environment.
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This study also investigated different exploration strategies in latent learning. Our
results have shown that the differences in learning speed might be attributed to how
agents explore the environment. The inhibition-greedy policy proposed in our study offers
distinct advantages over the softmax or ε-greedy policies. Specifically, in the context of
Tolman’s setup, the escape latency results revealed that our proposed policy outperformed
the ε-greedy policy employed by the direct learning agents and demonstrated improved
learning stability for the latent learning agents compared to the softmax policy. These
findings highlight the potential of our proposed policy as a solution for addressing the
exploration-exploitation trade-off in reinforcement learning.

Future research in this area may investigate the potential applications of the
integrated RatSLAM and CoBeL-RL framework in real-world scenarios, including robotics
and autonomous navigation. Additionally, exploring the impact of environmental factors on
latent learning and spatial memory could lead to a better understanding of how animals
and agents navigate their surroundings. Further investigation into the predictive nature of
cognitive maps could also provide insights into how these maps are formed and utilized in
decision-making processes.

Ultimately, these findings contribute to advancing computational techniques
in building maps for spatial navigation and learning, holding potential for real-world
applications in the robotic and neuroscience fields.

6.3 Scientific Productions

Table 3 presents the published articles directly related to the proposed method and
as the first author. Additionally, Table 4 lists the scientific papers published and submitted
as the co-author related to the proposed method in spatial navigation applications since
the beginning of the doctoral program.

Table 3 – Scientific productions related to the proposed methods as the first author.

Article Type Qualis Status
A Multisession SLAM Approach for RatSLAM In: Journal
of Intelligent & Robotic Systems Year: 2023.

Journal A2 Published

Automatic Tuning of RatSLAM’s Parameters by Irace
and Iterative Closest Point In: IECON 2020 The 46th
Annual Conference of the IEEE Industrial Electronics
Society Year: 2020.

Conference A2 Published
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Table 4 – Scientific productions related to the proposed methods and the spatial navigation
field as the co-author.

Articles Type Qualis Status
CoBeL-RL: A Neuroscience-oriented Simulation Framework
for Complex Behavior and Learning In: Frontiers in Neuroinfor-
matics Year: 2023.

Journal A2 Published

XRatSLAM: An Extensible RatSLAM Computational Frame-
work In: Sensors Year: 2022.

Journal A2 Published

Loss function regularization on the Iterated Racing Procedure
for Automatic Tuning of RatSLAM Parameters. In: Computa-
tional Neuroscience, Series of Communications in Computer
and Information Science, Third Latin American Workshop,
LAWCN Year: 2021.

Book Chapter B2 Published
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