

UNIVERSIDADE FEDERAL DO MARANHÃO PRÓ-REITORIA DE PESQUISA, PÓS-GRADUAÇÃO E INOVAÇÃO CENTRO DE CIÊNCIAS SOCIAIS, DA SAÚDE E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DOS MATERIAIS

BEATRIZ DA SILVA BATISTA

SÍNTESE E CARACTERIZAÇÃO DAS LIGAS $Co_{63}Cr_{28}W_{9-x}Ta_x$ (x = 0, 2, 4, 6 e 9 %p) PARA USO COMO BIOMATERIAIS

Imperatriz 2020

BEATRIZ DA SILVA BATISTA

SÍNTESE E CARACTERIZAÇÃO DAS LIGAS $Co_{63}Cr_{28}W_{9-x}Ta_x$ (x = 0, 2, 4, 6 e 9 %p) PARA USO COMO BIOMATERIAIS

Dissertação apresentada ao Programa de Pós-Graduação em Ciência dos Materiais da Universidade Federal do Maranhão como parte dos requisitos para a obtenção do Título de Mestre em Ciência dos Materiais.

Orientadora: Profa. Dra. Luciana Magalhães Rebêlo Alencar. Coorientadora: Profa. Dra. Luzeli Moreira da Silva.

> Imperatriz 2020

CATALOGAÇÃO NA FONTE

Núcleo Integrado de Bibliotecas/UFMA

Batista, Beatriz da Silva.

Síntese e caracterização das ligas $Co_{63}Cr_{28}W_{9-x}Ta_x$ (x = 0, 2, 4, 6 e 9 %p) para uso como biomateriais / Beatriz da Silva Batista. – 2020. 111 p. Coorientadora: Luzeli Moreira da Silva. Orientadora: Luciana Magalhães Rebêlo Alencar. Dissertação (Mestrado) - Programa de Pós-Graduação em Ciência dos Materiais/cesst, Universidade Federal do Maranhão, Online (Plataforma Google Meet), 2020.

1. Bioligas. 2. Cobalto-cromo. 3. Tântalo. I. Alencar, Luciana Magalhães Rebêlo. II. Silva, Luzeli Moreira da. III. Título.

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação, desde que citada a fonte.

Assinatura

Data

Beatriz da Silva Batista

SÍNTESE E CARACTERIZAÇÃO DAS LIGAS $Co_{63}Cr_{28}W_{9-x}Ta_x$ (x = 0, 2, 4, 6 e 9 %p) PARA USO COMO BIOMATERIAIS

Dissertação apresentada ao Programa de Pós-Graduação em Ciência dos Materiais da Universidade Federal do Maranhão como parte dos requisitos para a obtenção do Título de Mestre em Ciência dos Materiais.

Aprovado em: 29 / 12 / 2020 Banca Examinadora:

> Profa. Dra. Luciana Magalhães Rebêlo Alencar (Orientadora) Universidade Federal do Maranhão - Campus São Luís

Profa. Dra. Luzeli Moreira da Silva (Coorientadora) Universidade Federal do Maranhão - Campus Imperatriz

Prof. Dr. Rossano Lang Carvalho Universidade Federal de São Paulo - UNIFESP

DEDICATÓRIA

Aos meus pais e irmão, que com muito carinho e apoio, estão comigo em cada etapa.

"Sonho que se sonha só é só um sonho que se sonha só, mas sonho que se sonha junto é realidade".

Raul Seixas

AGRADECIMENTO

À Deus, pela oportunidade e por colocar pessoas especiais em meu caminho durante a realização deste trabalho;

À professora Dra. Luciana, que sempre se apresentou disposta e animada, motivando e orientando da melhor maneira possível. Obrigada pela paciência e por não medir esforços durante estes tempos de pandemia para que conseguíssemos levar a pesquisa adiante;

À professora Dra. Luzeli, que desde o início do mestrado apontou da melhor maneira como eu deveria melhorar, me corrigindo sempre que necessário com relação à pesquisa e às disciplinas em que ministrou. Obrigada pela paciência e compreensão;

Aos professores Adenilson, Alan, Jerias e Mariana, por suas contribuições a pesquisa, sempre estando dispostos a ensinar e ajudar. Obrigada pela disponibilidade e seus ensinamentos;

À Ana Angélica, que desde a graduação sempre me motivou a encarar os desafios e superar os problemas, dando força, conselhos e uma amizade que aprecio muito;

Aos meus pais, João e Niusete, e irmão, João Lucas, pelo amor e apoio incondicional que me transmitem sempre, me instruindo e dando forças a sempre seguir em frente;

Aos queridos Raychiman, Sara, Josiel, Ruana, Socorro e Adriano por compartilharem seu tempo e conhecimento, me ajudando na realização de medidas e tratamento de dados;

Aos colegas do laboratório de materiais metálicos Emanuela, Ronaldo, Jéssica, Andreza e Natália, pelos momentos de descontração no laboratório e contribuições na pesquisa;

Aos meus amigos Natália Katarina, Thalyta, Dálet, Izabella e Lincoln que estão sempre comigo dando força, motivação e me fazendo rir;

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão de bolsa de estudo;

A todos que, direta ou indiretamente, contribuíram para a realização deste trabalho. Muito obrigada!

RESUMO

Ligas a base de cobalto (Co) e cromo (Cr) são utilizadas na área biomédica por apresentarem excelente biocompatibilidade, resistência a corrosão e propriedades mecânicas adequadas. Contudo, não são materiais bioativos, isto é, não formam uma camada superficial de hidroxiapatita (HA) quando em contato com o sistema biológico, responsável pela ligação entre o material artificial e o osso vivo. Usualmente, a adição de elementos liga pode melhorar as propriedades da liga, nesse sentido espera-se que a adição de um elemento bioativo como o Ta possa bioativar as ligas de CoCr. Neste estudo, sintetizou-se uma série de ligas $Co_{63}Cr_{28}W_{9-x}Ta_x$ (x = 0, 2, 4, 6 e 9 % em peso), a fim de investigar a influência do Ta nas propriedades estrutural, física, mecânica e bioativa dessas ligas a base de CoCr. As amostras foram caracterizadas por Difração de raios X (DRX), Densidade Volumétrica, Microdureza Vickers (HV), Microscopia de Força Atômica (AFM), Microscopia Eletrônica de Varredura (MEV) e Espectroscopia de Raios X por Dispersão em Energia (EDS). As ligas $Co_{63}Cr_{28}W_{9-x}Ta_x$ apresentaram a formação das fases ϵ Co, α Co e τ CoTa, mostrando que o Cr e o W se distribuem na matriz do Co enquanto o Ta, a partir de 4% em peso, promove uma nova fase (τ CoTa). A densidade volumétrica mostra uma tendência decrescente com o aumento da concentração de Ta devido à diferença entre a densidade Ta e W. Foi observado um aumento da quantidade de HV na superfície das amostras à medida que x aumenta, indicando que a fase rCoTa contribuiu para o crescimento de HV. Para identificar o crescimento de HA, as amostras, sem e com tratamento termoquímico da superfície, foram imersas em Simulated Body Fluid (SBF) por 28 dias. Medidas de DRX e AFM, realizadas nas amostras antes da imersão em SBF, indicaram a formação de óxidos de Ta em formato de cristais adesivos na superfície das amostras com tratamento termoquímico, aumentando a rugosidade dessas superfícies. Medidas de DRX e MEV/EDS, realizadas nas amostras após a imersão em SBF, comprovam a nucleação de HA nas amostras x = 2 a x = 9 tratadas termoquímicamente, em consequência da formação de grupos Ta-OH. A substituição de W por Ta nas ligas de CoCrW foi eficiente em promover ligas dentro dos padrões do setor biomédico, com destaque para a liga x = 9. Além disto, o tratamento termoquímico foi fundamental em bioativar as ligas, por meio da oxidação do Ta.

Palavras-chave: Bioligas. Cobalto-cromo. Tântalo.

ABSTRACT

Cobalt (Co) chrome (Cr) based alloys have been used for biomedical applications due to the excellent biocompatibility, corrosion resistance as well as mechanical properties. However, these alloys are not considered bioactive materials, e. i. they don't form a surface hydroxyapatite (HA) layer when in contact with the biological system which is responsible for the connection between artificial material and living bone. Usually, the alloying elements addition can improve the alloy properties, in this sense it is expected that the addition of a bioactive element such as Ta can improve the bioactivity properties of CoCr alloys. In this study $Co_{63}Cr_{28}W_{9-x}Tax$ (x = 0, 2, 4. 6 and 9%p) series of compounds was synthesized aiming to investigate the influence of Ta on the structural, physical, mechanical and bioactive properties of these alloys. X-ray Diffraction (XRD), Volumetric Density, Vickers Microhardness (HV), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Energy Dispersion X-Ray Spectroscopy (EDS) were are used to characterize the samples. The results indicate that $Co_{63}Cr_{28}W_{9-x}Tax$ alloys crystallize ϵ Co, α Co and τ CoTa phases. Cr and W are distributed in the Co matrix while the Ta addition amount hight than, 4%p, promotes an extra phase (τ CoTa) formation. The volumetric density shows a downward trend with the increase of Ta concentration due to the difference between Ta and W density. It was observed an increase in the HV amount in the surface of samples as x increase, indicating that the τ CoTa phase contributed to the HV growth. The growth of HA, the samples, after and before thermochemical surface treatment, was evaluated by immersion in Simulated Body Fluid (SBF) for 28 days. XRD and AFM measurements, performed before samples immersion in SBF, indicated the presence of Ta oxides adhesive crystals on the samples surface submitted to thermochemical treatment, which increase the sample surface roughness. XRD and SEM/EDS measurements, performed after sample SBF immersion, indicate the HA growth for the samples with x = 2 to x = 9 submitted to thermochemical treatment, due to the Ta-OH groups presence. The Ta substitution by W in the CoCrW alloys was efficient to produce alloys within the biomedical standards, with emphasis on the alloy x = 9. In addition, thermochemical treatment was fundamental in alloys bioactivation, through the oxidation of Ta.

Keywords: Bioalloys. Cobalt-chromium. Tantalum.

LISTA DE FIGURAS

2.1	Etapas que o material deve passar para ser aplicado como biomaterial, desde as			
	ciências básicas à aplicação clínica.	4		
2.2	Diagrama de fases da liga binária CoCr relacionando temperatura, composição			
	química e quantidade das fases em equilíbrio.	6		
2.3	Principais propriedades físico-químicas da superfície quanto a resposta bioló-			
	gica a biomateriais.	11		
2.4	Esquema da formação de apatita em uma superfície de liga a base de Ti, en-			
	quanto imersa em SBF, após tratamento alcalino e térmico	16		
3.1	(a) Forno à arco voltaico. As setas indicam a câmara de fusão (seta lilás), o			
	cadinho de cobre (seta verde), o eletrodo móvel de W (seta vermelha), a esfera			
	de Ti (seta amarela) e a tampa de aço (seta azul). (b) Forno tipo mufla	18		
3.2	Ligas metálicas, $x = 0, 2, 4, 6 e 9$, obtidas pelo método de fusão a arco voltaico.	18		
3.3	Representação da difração das ondas incidentes por uma estrutura cristalina.			
	Feixe de raios X paralelo, monocromático e coerente incide com um ângulo			
	θ sobre dois planos atômicos paralelos separados por uma distância interplanar			
	d_{hkl} e disperso pelos átomos A e B	22		
3.4	Penetrador de diamante utilizado no ensaio de microdureza Vickers e a forma			
	de impressão feita no material. As cores apresentadas são ilustrativas	23		
3.5	Sistema de operação generalizado de um AFM.	25		
3.6	Representação esquemática de uma curva de força versus deslocamento medida			
	em uma amostra com adesão de superfície	26		
3.7	Mapas de altura e adesão na superfície da amostra $x = 9_{lp}$	27		
4.1	Padrões de difração de raios X das ligas x = 0, 2, 4, 6 e 9, comparados as posições			
	(2θ) de reflexões das fases presentes nas ligas, ϵ Co, α Co e τ CoTa	30		
4.2	Densidade volumétrica das ligas $x = 0, 2, 4, 6 e 9$. Os quadrados azuis informam			
	o valor médio para cada liga e as linhas em vermelho e verde indicam o valor			
	médio das densidades e a regressão linear, respectivamente, enquanto as barras			
	são as propagações de erro.	31		

4.3	Microdurezas Vickers das ligas $x = 0, 2, 4, 6 e 9$. Os quadrados azuis informam o	
	valor médio para cada liga, as linhas em vermelho e lilás indicam o valor médio	
	das densidades e a verde indica a regressão linear, enquanto as barras são os	
	desvios padrões.	32
4.4	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 0 _{lp}	34
4.5	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 2 _{lp}	34
4.6	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 4 _{<i>lp</i>}	35
4.7	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 6 _{<i>lp</i>}	35
4.8	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 9 _{<i>lp</i>}	36
4.9	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 0 _l	36
4.10	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 2 _l	37
4.11	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 4 _l	37
4.12	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 6 _l	38
4.13	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 9 _l	38
4.14	Rugosidade média quadrática calculados a partir dos mapas de 30 x 30 μ m. a)	
	amostras $x = 0_{lp}$ a 9_{lp} . b) amostras $x = 0_l$ a 9_l . Obs.: os valores de R_q foram	
	medidos em regiões de 5 x 5 μ m nos mapas de 30 x 30 μ m	39
4.15	Mapa de adesão em comparação ao mapa de altura, com varreduras 5 x 5 μ m,	
	da amostra $\mathbf{x} = 0_{lp}$	41
4.16	Mapa de adesão em comparação ao mapa de altura, com varreduras 5 x 5 $\mu {\rm m},$	
	da amostra x = 2_{lp} .	41

4.17	Mapa de adesão em comparação ao mapa de altura, com varreduras 5 x 5 μ m,	
	da amostra $x = 4_{lp}$.	41
4.18	Mapa de adesão em comparação ao mapa de altura, com varreduras 5 x 5 μ m,	
	da amostra $x = 6_{lp}$.	42
4.19	Mapa de adesão em comparação ao mapa de altura, com varreduras 5 x 5 μ m,	
	da amostra $x = 9_{lp}$.	42
4.20	Mapa de adesão em comparação ao mapa de altura, com var reduras 30 x 30 $\mu {\rm m},$	
	da amostra $\mathbf{x} = 0_l$.	42
4.21	Mapa de adesão em comparação ao mapa de altura, com var reduras 30 x 30 $\mu {\rm m},$	
	da amostra $x = 2_l$.	43
4.22	Mapa de adesão em comparação ao mapa de altura, com var reduras 30 x 30 $\mu {\rm m},$	
	da amostra $x = 4_l$.	43
4.23	Mapa de adesão em comparação ao mapa de altura, com var reduras 30 x 30 $\mu {\rm m},$	
	da amostra $x = 6_l$.	43
4.24	Mapa de adesão em comparação ao mapa de altura, com var reduras 30 x 30 $\mu {\rm m},$	
	da amostra $x = 9_l$.	44
4.25	Adesão calculada a partir dos mapas de 30 x 30 μ m. a) amostras x = 0 _{lp} a 9 _{lp} .	
	b) amostras $x = 0_l a 9_l$.	44
4.26	Padrões de difração de raios X das amostras $x = 0_{lt}$, 2_{lt} , 4_{lt} , 6_{lt} e 9_{lt} em compara-	
	ção as posições (2 θ) de reflexões das fases obtidas pelo tratamento termoquímico	
	da superfície (ρ TaO e σ CaTaO). As figuras geométricas em vermelho indicam	
	os picos característicos das fases de composição das amostras (ϵ Co, α Co e τ CoTa).	46
4.27	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 0 _{<i>lt</i>}	47
4.28	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 2 _{lt}	48
4.29	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 4 _{lt}	48
4.30	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 6 _{<i>lt</i>}	49
4.31	Mapas de altura (2D e 3D) e <i>deflection/error</i> com varreduras de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m da amostra x = 9 _{<i>lt</i>}	49

4.32	Mapas de altura 2D com varredura 5 x 5 μ m das amostras x = 0 _{lt} a 9 _{lt} mostrando	
	as estruturas formadas na base da superfície devido ao tratamento termoquímico.	50
4.33	Distribuição de altura e raio equivalente (r_{eq}) dos cristais das amostras $x = 2_{lt}$,	
	4_{lt} e 9_{lt} calculados a partir dos mapas de 30 x 30 μ m. Os mapas 1, 2 e 3 são os	
	três mapas de altura, varredura 30 x 30 μ m, obtidos para cada uma das amostras.	
	Os parâmetros (N) que definem a função de distribuição são a média (σ) e o	
	desvio padrão (ω) mostrados ao lado das curvas	51
4.34	Rugosidade média quadrática calculados a partir dos mapas de 30 x 30 μ m. a)	
	amostras $x = 0_l$ a 9_l . b) amostras $x = 0_{lt}$ a 9_{lt} . Obs.: os valores de R_q foram	
	medidos em regiões de 5 x 5 μ m nos mapas de 30 x 30 μ m	51
4.35	Mapa de adesão em comparação ao mapa de altura, com varredura 30 x 30 $\mu {\rm m},$	
	para a amostra $\mathbf{x} = 0_{lt}$.	53
4.36	Mapa de adesão em comparação ao mapa de altura, com varredura 30 x 30 μ m,	
	para a amostra $x = 2_{lt}$.	53
4.37	Mapa de adesão em comparação ao mapa de altura, com varredura 30 x 30 μ m,	
	para a amostra $x = 4_{lt}$.	53
4.38	Mapa de adesão em comparação ao mapa de altura, com varredura 30 x 30 $\mu {\rm m},$	
	para a amostra $\mathbf{x} = 6_{lt}$	54
4.39	Mapa de adesão em comparação ao mapa de altura, com varredura 30 x 30 $\mu {\rm m},$	
	para a amostra $x = 9_{lt}$	54
4.40	Adesão calculada a partir dos mapas de 30 x 30 μ m. a) amostras x = 0 _l a 9 _l . b)	
	amostras $\mathbf{x} = 0_{lt}$ a 9_{lt} .	54
4.41	Padrões de difração de raios X das amostras $x = 0_l^{SBF}$, 2_l^{SBF} , 4_l^{SBF} , 6_l^{SBF} e	
	9_l^{SBF} comparados as posições (2 θ) de reflexões da hidroxiapatita (HA) e do	
	cloreto de sódio (NaCl). As figuras geométricas em vermelho indicam os picos	
	característicos das fases de composição das ligas (ϵ Co, α Co e τ CoTa)	56
4.42	Padrões de difração de raios X das amostras $x = 0_{lt}^{SBF}$, 2_{lt}^{SBF} , 4_{lt}^{SBF} , 6_{lt}^{SBF} e 9_{lt}^{SBF}	
	comparados as posições (2 θ) de reflexões da hidroxiapatita (HA) e do cloreto	
	de sódio (NaCl). As figuras geométricas em azul e em vermelho indicam os	
	picos característicos das fases obtidas pelo tratamento termoquímico da superfi-	
	cie (ρ TaO e σ CaTaO) e das fases de composição das ligas (ϵ Co, α Co e τ CoTa),	
	respectivamente.	57

4.43	Fotomicrografria das amostras $x = 0_l^{SBF}$ e 9_l^{SBF} sem tratamento termoquímico,	
	após a imersão em SBF por 28 dias.	58
4.44	Fotomicrografria das amostras $x = 0_{lt}^{SBF}$, 2_{lt}^{SBF} , 4_{lt}^{SBF} , 6_{lt}^{SBF} e 9_{lt}^{SBF} com trata-	
	mento termoquímico, após a imersão em SBF por 28 dias.	58
4.45	Fotomicrografria da amostra $x = 0_l^{SBF}$ com pontos descritos pelo EDS com feixe	
	de elétrons de energia 1 keV.	59
4.46	Fotomicrografria da amostra x = 0_l^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 6 keV.	59
4.47	Fotomicrografria da amostra x = 9_l^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 1 keV.	60
4.48	Fotomicrografria da amostra x = 9_l^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 6 keV.	60
4.49	Mapas composicionais indicando a distribuição dos elementos químicos Co, Cr,	
	W, O, Na, Cl, Mg e Ca na amostra $x = 0_l^{SBF}$	61
4.50	Mapas composicionais indicando a distribuição dos elementos químicos Co, Cr,	
	Ta, Na e Cl na amostra x = 9_l^{SBF}	62
4.51	Fotomicrografria da amostra x = 0_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 6 keV.	63
4.52	Fotomicrografria da amostra x = 0_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 25 keV.	63
4.53	Fotomicrografria da amostra x = 2_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 1 keV.	64
4.54	Fotomicrografria da amostra x = 2_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 3 keV.	64
4.55	Fotomicrografria da amostra x = 2_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 6 keV.	65
4.56	Fotomicrografria da amostra x = 4_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 1 keV.	65
4.57	Fotomicrografria da amostra x = 4_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 3 keV.	66
4.58	Fotomicrografria da amostra x = 4_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
	de elétrons de energia 6 keV.	66

Fotomicrografria da amostra x = 6_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
de elétrons de energia 3 keV.	67
Fotomicrografria da amostra x = 6_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
de elétrons de energia 6 keV.	67
Fotomicrografria da amostra x = 9_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
de elétrons de energia 1 keV.	68
Fotomicrografria da amostra x = 9_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
de elétrons de energia 3 keV.	68
Fotomicrografria da amostra x = 9_{lt}^{SBF} com pontos descritos pelo EDS com feixe	
de elétrons de energia 6 keV.	69
Mapas composicionais indicando a distribuição dos elementos químicos Co, Cr,	
W, Mg, Na, Cl, Ca e P na amostra $x = 0_{lt}^{SBF}$.	69
Mapas composicionais indicando a distribuição dos elementos químicos Co, Cr,	
W, Ta, Na, Cl, Ca e P na amostra $x = 2_{lt}^{SBF}$.	70
Mapas composicionais indicando a distribuição dos elementos químicos Co, Cr,	
W, Ta, Na, Cl, Ca e P na amostra $x = 4_{lt}^{SBF}$.	70
Mapas composicionais indicando a distribuição dos elementos químicos Co, Cr,	
W, Ta, Na, Cl, Ca e P na amostra $x = 6_{lt}^{SBF}$.	71
Mapas composicionais indicando a distribuição dos elementos químicos Co, Cr,	
W, O, Na, Cl, Ca e P na amostra $x = 9_{lt}^{SBF}$.	71
	Fotomicrografria da amostra x = 6_{lt}^{SBF} com pontos descritos pelo EDS com feixe de elétrons de energia 3 keV

LISTA DE TABELAS

2.1	Composições químicas das ligas de CoCr mais utilizadas na área médica.	7
2.2	Propriedades mecânicas de biomateriais metálicos comparadas as do osso cortical.	8
2.3	Propriedades mecânicas das ligas de CoCr mais utilizadas na área médica	9
2.4	Propriedades mecânicas de ligas usadas em dentaduras parciais.	10
2.5	Razão Ca/P dos fosfatos de cálcio.	14
2.6	Concentrações iônicas (mM) dos íons do plasma sanguíneo e do SBF	15
3.1	Nomenclatura das ligas conforme a quantidade de Ta (% em peso)	17
3.2	Nomenclatura das amostras conforme a preparação superficial	19
3.3	Ordem de utilização e pureza dos reagentes para a preparação do SBF	20
3.4	Nomenclatura das amostras após a imersão em SBF	21
4.1	Descrição dos dados estatísticos de rugosidade média quadrática com varredura	
	de 30 x 30 μ m das amostras x = 0 _{lp} a 9 _{lp} . Obs.: os valores de R _q foram medidos	
	em regiões de 5 x 5 μ m nos mapas de 30 x 30 μ m	39
4.2	Descrição dos dados estatísticos de rugosidade média quadrática com varredura	
	de 30 x 30 μ m das amostras x = 0 _l a 9 _l . Obs.: os valores de R _q foram medidos	
	em regiões de 5 x 5 μ m nos mapas de 30 x 30 μ m	40
4.3	Rugosidade média quadrática calculada a partir dos mapas de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m das amostras x = 0 _{lp} a 9 _{lp} . Obs.: os valores de R _q foram	
	medidos nos mapas por completo.	40
4.4	Rugosidade média quadrática calculada a partir dos mapas de 30 x 30 μ m, 15	
	x 15 μ m e 5 x 5 μ m das amostras x = 0 _l a 9 _l . Obs.: os valores de R _q foram	
	medidos nos mapas por completo.	40
4.5	Descrição dos dados estatísticos de adesão com varredura de 30 x 30 μ m das	
	amostra $\mathbf{x} = 0_{lp}$ a 9_{lp} .	44
4.6	Descrição dos dados estatísticos de adesão com varredura de 30 x 30 μ m das	
	amostra $x = 0_l$ a 9_l .	45

4.7	Descrição dos dados estatísticos de rugosidade média quadrática com varredura	
	de 30 x 30 μ m das amostras x = 0 _l a 9 _l . Obs.: os valores de R _q foram medidos	
	em regiões de 5 x 5 μ m nos mapas de 30 x 30 μ m	52
4.8	Descrição dos dados estatísticos de rugosidade média quadrática com varredura	
	de 30 x 30 μ m das amostras x = 0 _{lt} a 9 _{lt} . Obs.: os valores de R _q foram medidos	
	em regiões de 5 x 5 μ m nos mapas de 30 x 30 μ m	52
4.9	Valores da rugosidade média quadrática calculados a partir dos mapas de 30 x	
	30 μ m, 15 x 15 μ m e 5 x 5 μ m das amostras x = 0 _{lt} a 9 _{lt} . Obs.: os valores de R _q	
	foram medidos nos mapas por completo	52
4.10	Descrição dos dados estatísticos de adesão com varredura de 30 x 30 μ m das	
	amostras $x = 0_l a 9_l \dots \dots$	55
4.11	Descrição dos dados estatísticos de adesão com varredura de 30 x 30 μ m das	
	amostras $\mathbf{x} = 0_{lt}$ a 9_{lt} .	55

LISTA DE SIGLAS E ABREVIATURAS

ASTM F75	Liga à base de cobalto - $CoCr_{28}Mo_6$
ASTM F90	Liga à base de cobalto - $CoCr_{20}W_{15}Ni_{10}$
ASTM F1537	Liga à base de cobalto - CoCr ₂₈ Mo ₆
	(Alto teor de C, N e sem Ni)
ASTM F562	Liga à base de cobalto - $CoNi_{35}Cr_{20}Mo_{10}$
SBF	Fluido corporal simulado (Simulated body fluid)
ASTM	do inglês American society for testing materials
P/M	Metalurgia do pó
HIP	Prensagem isostática a quente
TF	Trabalhado a frio
ND	Não disponível
HA	Hidroxiapatita
SBF – o	Concentração iônica da solução do SBF original
SBF – c	Concentração iônica da solução do SBF corrigido
SBF – r	Concentração iônica da solução do SBF revisado
SBF – n	Concentração iônica da solução do novo SBF
$\mathbf{x} = 0$	Liga Co ₆₃ Cr ₂₈ W ₉
x = 2	Liga $Co_{63}Cr_{28}W_7Ta_2$
$\mathbf{x} = 4$	Liga $Co_{63}Cr_{28}W_5Ta_4$
$\mathbf{x} = 6$	Liga $Co_{63}Cr_{28}W_3Ta_6$
x = 9	Liga $Co_{63}Cr_{28}Ta_9$
$\mathbf{x} = 0_{lp}$	Amostra $Co_{63}Cr_{28}W_9$ com superfície lixada e polida
$\mathbf{x} = 2_{lp}$	Amostra $Co_{63}Cr_{28}W_7Ta_2$ com superfície lixada e polida
$\mathbf{x} = 4_{lp}$	Amostra $Co_{63}Cr_{28}W_5Ta_4$ com superfície lixada e polida
$\mathbf{x} = 6_{lp}$	Amostra $Co_{63}Cr_{28}W_3Ta_6$ com superfície lixada e polida
$\mathbf{x} = 9_{lp}$	Amostra Co ₆₃ Cr ₂₈ Ta ₉ com superfície lixada e polida

$\mathbf{x} = 0_l$	Amostra Co ₆₃ Cr ₂₈ W ₉ com superfície lixada
$\mathbf{x} = 2_l$	Amostra $Co_{63}Cr_{28}W_7Ta_2$ com superfície lixada
$x = 4_l$	Amostra $Co_{63}Cr_{28}W_5Ta_4$ com superfície lixada
$\mathbf{x} = 6_l$	Amostra Co ₆₃ Cr ₂₈ W ₃ Ta ₆ com superfície lixada
$x = 9_l$	Amostra Co ₆₃ Cr ₂₈ Ta ₉ com superfície lixada
$\mathbf{x} = 0_{lt}$	Amostra $Co_{63}Cr_{28}W_9$ com superfície lixada e tratada
$\mathbf{x} = 2_{lt}$	Amostra $Co_{63}Cr_{28}W_7Ta_2$ com superfície lixada e tratada
$\mathbf{x} = 4_{lt}$	Amostra $Co_{63}Cr_{28}W_5Ta_4$ com superfície lixada e tratada
$\mathbf{x} = 6_{lt}$	Amostra Co ₆₃ Cr ₂₈ W ₃ Ta ₆ com superfície lixada e tratada
$\mathbf{x} = 9_{lt}$	Amostra $Co_{63}Cr_{28}Ta_9$ com superfície lixada e tratada
$\mathbf{x} = 0_l^{SBF}$	Amostra Co ₆₃ Cr ₂₈ W ₉ lixada e imersa em SBF
$\mathbf{x} = 2_l^{SBF}$	Amostra $Co_{63}Cr_{28}W_7Ta_2$ lixada e imersa em SBF
$\mathbf{x} = 4_{l}^{SBF}$	Amostra $Co_{63}Cr_{28}W_5Ta_4$ lixada e imersa em SBF
$\mathbf{x} = 6_l^{SBF}$	Amostra Co ₆₃ Cr ₂₈ W ₃ Ta ₆ lixada e imersa em SBF
$\mathbf{x} = 9_l^{SBF}$	Amostra Co ₆₃ Cr ₂₈ Ta ₉ lixada e imersa em SBF
$\mathbf{x} = 0_{lt}^{SBF}$	Amostra $Co_{63}Cr_{28}W_9$ lixada, tratada e imersa em SBF
$\mathbf{x} = 2_{lt}^{SBF}$	Amostra $Co_{63}Cr_{28}W_7Ta_2$ lixada, tratada e imersa em SBF
$\mathbf{x} = 4_{lt}^{SBF}$	Amostra $Co_{63}Cr_{28}W_5Ta_4$ lixada, tratada e imersa em SBF
$\mathbf{x} = 6_{lt}^{SBF}$	Amostra $Co_{63}Cr_{28}W_3Ta_6$ lixada, tratada e imersa em SBF
$\mathbf{x} = 9_{lt}^{SBF}$	Amostra $Co_{63}Cr_{28}Ta_9$ lixada, tratada e imersa em SBF
DRX	Difração de raios X
ICSD	do inglês Inorganic crystal structure database
HV	Microdureza Vickers (Vickers hardness)
SPM	do inglês Scanning probe microscope
AFM	do inglês Atomic force microscope
STM	do inglês Scanning tunneling microscope
QNM	do inglês Peak Force Quantitative Nanomechanics
MEV	Microscopia eletrônica de varredura
EDS	Espectroscopia de raios X por dispersão em energia

LISTA DE SÍMBOLOS

- α Co Estrutura cúbica de face centrada do cobalto
- ϵ Co Estrutura hexagonal compacta do cobalto
- V_s Volume da solução (mL)
- V_a Área aparente da superfície da amostra (mm²)
- d_{hkl} Distância interplanar
- n Número inteiro
- λ Comprimento de onda
- ρ_{exp} Densidade volumétrica experimental (g/cm³)
- ρ_l Massa específica da água
- M_a Massa da amostra medida em ar
- M_l Massa do picnômetro com a água
- M_{la} Massa do conjunto picnômetro com amostra submersa na água
- F Carga aplicada no penetrador
- A Área de impressão do penetrador
- d Valor médio das diagonais d₁ e d₂ presentes na impressão do penetrador
- R_q Rugosidade média quadrática
- m Número de pontos (*pixels*)
- *y* Distância vertical máxima entre os pontos de dados mais alto e mais baixo no cursor da caixa

SUMÁRIO

1	Intr	Introdução		
2	Rev	isão Bib	oliográfica	3
	2.1	Bioma	teriais	3
		2.1.1	Ligas metálicas de cobalto - cromo	5
	2.2	Relaçã	io estrutura-propriedade	7
	2.3	Propri	edades mecânicas	8
	2.4	Bioativ	vidade	10
		2.4.1	Formação de hidroxiapatita	13
3	Mat	eriais e	Métodos	17
	3.1	Síntese	e das Ligas Metálicas	17
	3.2	Prepar	ação superficial das amostras	18
		3.2.1	Lixamento e polimento da superfície	18
		3.2.2	Tratamento termoquímico da superfície	19
		3.2.3	Nomenclatura das amostras	19
	3.3	Imersã	io das amostras em SBF	19
	3.4	Técnic	as de Caracterização	21
		3.4.1	Difração de raios X	21
		3.4.2	Densidade volumétrica	22
		3.4.3	Microdureza Vickers	23
		3.4.4	Microscopia de Força Atômica	24
		3.4.5	Microscopia Eletrônica de Varredura e Espectroscopia de Raios X por	
			dispersão em energia	27
4	Resi	ultados	e Discussão	29
	4.1	Propri	edades estrutural, física e mecânica	29
		4.1.1	Difração de raios X	29
		4.1.2	Densidade volumétrica	30
		4.1.3	Microdureza Vickers	32
		4.1.4	Microscopia de força atômica	33

xxviii

	4.2 Propriedade bioativa			45
		4.2.1	Difração de raios X antes da imersão em SBF	45
		4.2.2	Microscopia de força atômica antes da imersão em SBF	47
		4.2.3	Difração de raios X após a imersão em SBF	55
		4.2.4	Microscopia eletrônica de varredura e espectroscopia de raios X por dis-	
			persão em energia após a imersão em SBF	57
5 Conclusão e Perspectivas Futuras		73		
		REFE	CRÊNCIAS	75